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Abstract

This paper describes a project to classify and localize RoboCup soccer-playing robots from their camera images, using Neural
Networks. For RoboCup MSL robots it is important to extract information from their environment during a competition. The main
sensor is an omnidirectional camera which provides a 360 degree view of a part of the field where the robot is operating. Among
other things the robot needs to find out the location of other robots and identify them as belonging to the same team, or the opponent.
In addition it needs to recognize the ball and possibly other objects like the referee.

Analysis of the omnidirectional image is currently done with industry-standard vision technology that can detect the presence
of a robot but not its identity. With the use of Neural Networks we hope to be able to identify the robots on the field and collect
more detailed information about the game situation that will allow the robot to learn new behaviors that will gradually improve its
performance over time. This first step is aimed at collecting the necessary information to create such a system in a follow-up project.

Because the appearance of the competing robots is unknown in advance to the competition, training needs to be done on-site.
There are in total 12 robots on the field and all robots of a team are similar. So there is a very limited number of samples. The
onidirectional camera distorts the image, so the training program needs to create samples that are identical to these images, The
robots have limited processing capabilities, so the network must be small and fast enough to identify robots moving at speeds of up
to 3 m/s.

I. Introduction

In this document we describe the first step in a search
for an approach based on neural networks that must
learn to recognize and locate robots in the Tech

United Turtle robots. The Turtle robots are compet-
ing in the RoboCup Midsize League and are 3-wheeled
omni-directional robots, equipped with on-board com-
puters, an omni-directional camera, a Kinect camera and
a Jetson GPU board. The software for this platform is
completely written in C++ and MatLab and uses con-
ventional vision technology to recognize and localize
robots.

Most Neural Networks are currently created using standard
software platforms, classifying hundreds of classes and are
being trained with millions of input examples. They usually
take hours or days to train and result in large networks that
require powerful computers to run on. This is very different
from our case, where we basically have two types or robots to
identify as well as the ball and occasionally people. The num-
ber of examples is therefore rather limited as is the available
processor power of the robots. So this project is atypical in that
it works with a small, shallow network, has a limited number

of classes and very few examples. The main question to be
answered in this paper is therefore: Is it possible to train a
small Neural Network to reliably recognize a limited number
of object types, given only a few examples. An additional
question is if this network can be trained during a competition
and then run on an embedded platform.

The main aim of the project is to create a collection
of Neural Networks that in the future, will allow the
Turtle robots to learn new behaviors in such a way that
it forms a hybrid of existing software and a self-learning
system. We want the robots to recognize unknown game
situations and then allow a simulator to learn how to
treat these novel situations and then transfer this new
behavior to the robots.

The actual implementation of this idea will take
place in a smaller version of the Turtle, called the
mini-Turtle, running a Raspberry-Pi and a Movidius
Neural Compute Stick, so we aim for small and fast
networks that can operate in real-time on an embedded
system. We will also briefly describe a roadmap for
the development of the learning environment and the
structure of the robot behavior, employing a merger
between existing and deep learning technology. We
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are proposing that by combining both technologies we
can achieve a better control over when and where deep
learning is appropriate, while at the same time gaining
insight in the way new behaviors can be learned and
integrated into the existing system.

In this first step of the project we intend to use two
small Neural Networks, that will work together. The
first one is a small network, based on the MNIST and
CIFAR10 examples with a number of important adapta-
tions to allow classification of the robots, the ball and
people on the field. The second network locates the
robots in the omni-directional image and uses the first
network to identify each robot.

In most multi-object classification tasks, a variety of
different objects will need to be classified, so networks
are trained with 100 or more classes using many exam-
ples of different shapes, orientations and sizes. In our
case there is a limited number of objects; a Ball, Robots
of our own team or the opponent’s team and possibly
people like the referee. Robots of the same team have
generally the same shape, with the possible exception of
the keeper. All robots of a team wear the same kind of
shirt and have a recognizable number to identify them
(Figure 1).

Figure 1: MSL Turtle, side and front view

Robots need to be classified according to the following
criteria:

1. Classify robots as belonging to our own team or the
opponent. This is the most significant property.

2. Determine the orientation of the robot. Is it facing
us, or moving away. So we want to know if it is
Front, Left, Right or Backward facing.

3. Determine the identity of a robot. This information
is important when calculating a trajectory. Espe-
cially when robots move at high speed and come
together closely, it may be hard to keep track of
every individual robot. Having access to its identity
may help in these cases. However this is a task,
which is very difficult for distant robots or when
occlusion occurs. Although we started out with
MNIST to tackle this problem, we currently do not
include this classification level.

4. In addition to this we also need to classify the Ball
and People who might be moving around the field,
like the referee with possibly an orientation as with
the robots.

During a competition it is very important to have this
kind of information available at high frequencies in or-
der to keep track of fast moving objects. The simpler
the network, the faster it will be. But in addition to
identifying a robot, we also need to know its position
on the field. Locating multiple objects in an image is
the subject of many research projects and many propos-
als have been made. We will first discuss the various
problems and will then describe how we tackled this
problem. Existing solutions to the localization problem
are discussed in the appendix.

An image recognition pipeline generally consists of
three stages, and we will describe our approach to each
of these stages step by step in the following sections.

1. Feature Extraction. We will describe the various
possibilities and considerations for our system.

2. Object classification. We describe how our system
classifies objects.

3. Object localization. This forms the main body of
the current stage of the project.

II. Feature Extraction

In Computer Vision technology, the recognition of
objects is done by selecting a collection of features
that describe the object to be recognized. Techniques

that are used often are: Haar features, Histogram Of
Gradients (HOG) or Scale Invariant Feature Transform
(SIFT). As a result of the success of Neural Networks,
current interest concentrates more on automated feature
detection capabilities of these networks.

While most of the recent work concentrates on Convo-
lutional Neural Networks (CNN), other techniques have
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been developed that are in some cases equally successful.
Because we are interested in a simple and fast solution,
some of these approaches might also be of interest. A
very simple approach with a single layer network, using
K-means [2] shows results that are on a par with deep
convolutional networks. Here three criteria proved im-
portant; using feature sizes of 6x6 or less, using large
numbers of features (> 1000) and the use of whitening
of the input 2.

Figure 2: Features selected with K-means with and without whiten-
ing

We are interested in developing a simple, end-to-end
training facility that can also run on a small GPU and
will therefore concentrate on an implementation using a
convolutional network, but will take these findings as
an important consideration. For a historical overview of
CNNs, see [20]

To get started we are using a small Convolutional Neu-
ral Network (CNN) that is trained to recognize robots
from our own team and those from the opponent. We
started out with the camera images (see figure 3) and
developed a program to help with the selection of robots
in bounding boxes from these images. Initially all robots
had a standard number plate with the colors Cyan or
Magenta. But then a change in the competition rules
allowed the usage of shirts, which left us with no infor-
mation about the actual appearance of the robots prior
to a competition. So during a competition, we take pic-
tures of all robots and then use these to train a new
network for every match. Because the network is kept
very small, it can be trained on a desktop computer with
a GPU in a short amount of time. This network is then
used as the basis for the localization program.

The input for the network is a collection of pic-
tures, taken with a mobile phone camera with their
background removed. This picture is then distorted

to look very similar in shape to the image of the
omni-directional camera and rotated at several angles,
so we get about 1000 versions of every robot in different
orientations (B/F/L/R), color variations and other
augmentations. The network is trained with these
examples and then verified against samples, taken from
the Turtle camera (Figure 3).

All input pictures are scaled down to the smallest
versions that are visible in the Turtle image, which in
our case is 64x64 pixels. When taking examples from the
Turtle images for verification, the position of the robot in
the image is used to scale down the robot to this 64x64
image size. Because the aspect ratio of all robots is the
same, it is easy to take a robot from any position in the
image and calculate it’s distance, size and rotation in the
picture. This way the network only has to learn a single
size robot and can concentrate on the team identity and
orientation of the robots.

Figure 3: Image from the Turtle camera

To find the best architecture for this network we first
developed visualization software that gives insight into
what has been learned by the network. With this tool we
are able to find the best structure and number of filters
to classify the objects reliably. The fist step is to find the
best way to learn features that properly classify the robot.
Our program allows a large number of parameters to
be modified and with this we run many experiments
with different architectures and measure how reliable
the augmented and transformed input images train a
network to recognize robot images, selected from actual
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Turtle images.

Figure 4: User Interface of Network Training program

Figure 4 shows the program that is used to train and
test the network. During every experiment it keeps a
logfile of all settings, the training time and the error
rates of every training batch, the error on the testset
and on the validation set. The validation set consists
of examples for every object type, lifted from the Turtle
camera. We use the output of this program to show the
results of all experiments.

i. Hyper Parameters

When setting up a Neural Network there are many fac-
tors to consider like the number of layers, the number
of features or the kind of pre-processing of the images.
These settings are referred to as hyper-parameters and
many different configurations are possible. The art of
configuring a Neural Network is to find the best com-
bination of hyper-parameters to train a network for a
particular collection of input images.

The amount of variation that is the result of the hyper-
parameter settings determines the number of neurons
of the network, normally referred to as the parameters
of the network. The more parameters a network has,
the more different properties of the input images can
be learned, but more parameters also make the network
larger and require more processing power. So our task
is to find the best combination of the number of pa-
rameters, reliability of object classification and the time
required to perform the classification.

Our experiments in selecting the best network config-
uration evolve around the following steps:

1. Avoiding Overfitting
2. Color Correction
3. Input Distortion
4. Input Augmentation
5. Data preparation
6. Background Selection
7. Feature Size
8. Number of Features
9. Number of layers and dimensions for every layer

10. Configuration of Fully Connected Layers (FCL)
11. Performance of Feature Selection Process
12. Training Time

ii. Avoiding Overfitting

One of the major hurdles to overcome while building a
Neural Network is how to handle overfitting. Overfitting
happens when a network learns the inputs too well and
as a result looses the ability to recognize new examples.
The way to prevent this is to provide many different
examples and to limit the number of parameters of the
network.

Hopefully such a combination will contain sufficient
information to classify the target objects. Because our
aim is to train a network based on a small number of
classes, where the robots are almost identical, the risk
of overfitting is large. During many of our tests the
networks show the symptoms of overfitting. When the
loss factor (difference between the input class and the
predicted class) continues to decrease and the error on
the test-set stays stable or decreases, while the valida-
tion error is getting higher, the network is overfitting.
This means that it is learning to represent the input too
closely, thereby losing generality and thus the ability to
predict unseen examples correctly.

In Figure 5 the red line represents the loss, the green
line represents the error on the test-set and the blue line
the error on the validation-set. While the Loss and Test
error keep getting lower, the validation error initially
was in sync, but then starts to rise.

In our case the validation set consists of samples, lifted
from the actual Turtle images, thereby representing the
target objects that are never seen by the network during
training and therefore form a very good indicator of the
performance of the network. So when a test results in a
high validation error, this can mean that the network has
insufficient information, or that it might be overfitting.

Overfitting can be decreased by providing more ex-
amples, stopping the training at an earlier stage or by
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Figure 5: Example of a network that is overfitting

decreasing the learning rate. We have tried all possibil-
ities as part of the network design process. We cannot
increase the number of examples very much, because
of the limited number of robots involved in the pro-
cess. More variations of the robots does not increase the
information that is contained in these input images.

The process of finding the optimal network configu-
ration is an iterative process, driven by trial and error.
Almost all hyper-parameters influence each other, so the
descriptions that follow are not the result of a sequen-
tial process, but of many tests, shuttling back and forth
between changing the configuration of the network to
find out the influence of each of the hyper-parameters.

iii. Color Correction

One of the first things that we found out is the large
difference in color saturation between the phone images
and the Turtle camera images. This can be clearly seen
in Figure 3, where the blue number sign in the Turtle
image is very faint. So we introduced variable color
corrections on both the input- and Turtle images, so they
were more comparable. Then we started experiments
with several filter sizes and number of features. The
first round confirmed reports from several of the articles,
referenced in this paper, that 3x3 filters for every layer
worked best. We also experimented with ’Valid’ versus
’Same’ padding as this is used in TensorFlow and found
that ’Same’ padding, which keeps the spatial dimensions
of a layer constant works best.

In Figure 6 the filters for the first layer are shown. The
orange of the shirt and the blue from the opponent’s

Figure 6: Selected filters in the first layer

Table 1: Color Correction

Color Correction Test-err Val-err
No Correction 0.3 48.0
Input Correction 0.7 36.0
Turtle Correction 0.5 40.0
Input + Turtle Corr 0.4 16.0

robots are clearly visible. The bargraph shows that
there are 4 important features in this picture and the
large image shows the activation layer. This information
is then going through a pooling and RELU layer and
becomes input the the second layer. In this example the
ball was not classified correctly because the yellow of
the ball is not present in the selected features. So more
color corrections were required to make the these colors
also being represented in the filters.

Table 1 shows the difference in recognition between
color correction and no color correction on both the in-
put and the Turtle images. The results however are not
fully representative because the training of the network
with uncorrected data seems to be overfitting, which
drives the Validation error to a higher level. We dis-
cussed this in section ii.

iv. Input Augmentation

For every robot in a team there are be four pictures, one
for every orientation (Back, Front, Left and Right). We
remove the background using Gimp and replace it with a
solid green background. This results in a total of 20 robot
pictures for every team. We add another set of pictures
for the ball and some people, resulting in a total of about
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60 input pictures. Because 60 pictures is not enough
to train the network reliably, we use augmentation to
generate between 500 and 1000 variations for every robot
image. The same is done with images of the ball and of
people around the field. During augmentation, the green
background can be replaced with other backgrounds as
described in section vii. Every robot picture may then
be augmented by a number of versions of every picture,
using the following parameters:

1. Distortion. Distorts the image based on the proper-
ties of the Turtle camera mirror as described later.

2. Rotation. Rotates left and right for 45 degrees to
resemble images in the Turtle camera. We may add
more rotations later on if this proves necessary.

3. Scale. Images may be scaled. This is only a limited
scaling, because the input image is 64x64 pixels.
In the camera image the robot size varies between
64x64 and 128x128 pixels, but is always scaled down
to 64x64. So scaling is only done within the 64x64
images and is limited to about 10 pixels.

4. Color. This is the color variation of the input images,
to represent various lighting conditions.

5. Shift. These are random shifts of the image in vari-
ous directions.

Please note that we do not use flipping, since the robot
orientation is an important property to be learned and
flipping will also change the robot’s number plate. Also
up/down flipping would interfere with the rotation,
caused by the Turtle mirror. The number of variations
for every of the augmentations determines the total num-
ber of input images that the network will be trained on.
If it proves that this is insufficient information to reliably
train a network, we may create additional input images
by taking more photographs of the robots. Removing
the backgrounds however will involve additional prepa-
ration time during a competition, but fortunately that
only applies to the robots of the competitors.

In all test-cases we measure the performance of the
network through the error rate of the validation set.
The second measure is the variation in feature selection,
used to recognize the images. We express this as the top
activation levels of all activation layers of the network.
The larger the variation and activation levels, the more
accurate the recognition process will be. We will be
showing examples of this in section viii about Feature
Sizing.

Table 2: Distortion Correction

MSN Train-err Test-err Val-err
Undistorted Input 3.1 0.5 40.0
Distorted Input 0.5 0.5 12.0

v. Input Distortion

The Turtle’s omni-directional camera uses a conical mir-
ror to get a 360 degree image of the field around the
robot. Objects in the camera field are distorted following
a uniform pattern in the entire image. We therefore take
the original image, taken with a mobile phone camera
and distort it to make the input images similar to the
images of the robots in the Turtle camera image.

For this we use an affine transformation, which is
controlled by a distortion matrix. The training program
provides this matrix, which can be set with a number
of default values or can be manipulated manually to
test different transformations. The first experiments are
done to find out how much distortions influence the
training and recognition behavior of the neural network.
Figure 7 shows the difference between the input image
and the distorted image, used to train the network. Table
2 shows the results.

Figure 7: Difference between input image and robot in Turtle image

To enhance recognition further, we include 8 different
variations on the distortion, each slightly varying the
parameters of the distortion matrix. In Figure 8 the
result of distorting the input image against the Turtle
camera image is shown.

Of course all parameters influence the final results and
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Figure 8: Both images after distortion of the input

the settings of the network hyperparameters are highly
intertwined, so other factors are also of consideration.
Anyhow, we can see that the shape of the robot has a
large impact on the recognition performance and the
feature selection process that forms the basis for this
recognition, as we will see later on.

vi. Data preparation

There are many factors that influence the selection of fea-
tures. First we concentrated on preprocessing of the im-
ages. There are three different methods commonly used:
Mean Subtraction, Normalization (MSN) and Whitening.
The last one is generally not used in CNNs, and also
requires substantial processing time, which we cannot
afford when running a competition, so we did not use
this one.

So we concentrate on Mean Subtraction (also referred
to as Zero Centering) and Normalization. The total
number of input images is split into two sets; a training
set and a test set. Additionally a third set is generated
used for validation. This can be either a split-off from the
training set, but in most cases we take samples from the
Turtle images, since those are the target of the training
process.

All input sets are converted from RGB pixel values to
floating point numbers ranging between -1 and +1.

We then calculate the mean value of the training set
and the standard deviation. We subtract the mean from
all three sets and divide all three by the standard devi-
ation. This causes zero centering and normalization of
the input. According to the literature this process makes

Table 3: Normalization

MSN Test-err Val-err
Without MSN 2.1 20.0
With MSN 0.1 76.0

the input more easy to train.
The influence of this process is expressed as the error

rate on the test- and validation sets and the speed of
training in table 3.

It seems that using MSN in our case makes things
worse. One reason could be that all input images are
created in the same indoor environment, so they are no
natural pictures. The validation error started out high
and remained high, so the network was not overfitting,
while the version without MSN reached a low error rate
sooner but raised later on a little bit. So for now we are
using the raw input without any mean subtraction or
normalization.

vii. Background Selection

In order to let the system concentrate on the features in
the input images, we included a facility to select different
backgrounds. We can replace the green background with
other backgrounds to see which type has the highest
recognition factor. By eliminating the background from
the image and replacing it, we make sure, the network
does not learn the background as part of the image. We
included the following options:

1. No background. We leave the solid green back-
ground untouched.

2. Black background. By gving a black background,
the background is eliminated. This may have an in-
fluence since all robots are black, with the exception
of their shirts.

3. Random Field background. This takes random
patches from Turtle image backgrounds. It includes
typical backgrounds that are different for every gen-
erated image. We must take care not to include
other robots or objects as part of the background.

4. White background. A white background may create
a higher contrast with the robot part of the image.

5. Random Pixel background. This generates random
noise as the background.
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Table 4: Background Selection

Background Test-err Val-err Remark
None 3.7 16.0
Random 0.8 24.0 Constant level
White 0.1 32.0
Black 1.3 80.0 Constant High
Field 1.6 88.0 Growing higher

Table 5: Feature Sizes and Layers

Features T-err O-err Remark
5x08-3x16 16.0 44.0
5x16-3x32 24.0 52.0
3x08-3x16 36.0 56.0
3x16-3x32 28.0 52.0 Slight overfit
3x32-3x64 40.0 60.0 High loss
5x08-3x16-3x32 48.0 76.0 Starts high
3x08-3x16-3x32 20.0 44.0
3x16-3x32-3x64 12.0 40.0
5x16-3x32-3x64 28.0 40.0
3x32-3x64-3x128 36.0 48.0 Slight Overfit
3x08-3x16-3x32-3x40 10.3 60.3 * Third best
3x08-3x16-3x16-3x16 11.1 70.4
3x08-3x16-3x32-3x64 17.6 67.6
3x16-3x32-3x32-3x32 4.1 65.3 * Best
3x16-3x32-3x32-3x48 7.4 61.8 * Second Best
3x16-3x32-3x64-3x128 10.3 63.2

viii. Feature Size and Number of features and
Number of Layers

Based on the best performing settings we then started
varying the number of features and feature size first in
a network with two layers.

Table 5 shows that the four-layer versions with all 3x3
features performs best, while the two-layer version with
5x5 features in the first layer also perform reasonably.
We will therefore further concentrate on these versions
while looking at more alternatives.

Not only the performance of the network is of interest
but we also want to know what the network actually
learns and what kind of information is used to make
the selection. Also the size of the Fully Connected Layer
is of importance. We also see that the error rate on the
orientation remains around 60% and we would like to
get that down also.

So we want to have a good way to find out what the

features that the network has learned actually repre-
sent. We have developed a set of visualization facilities
to make this clear. First we will look at the features,
selected in the first layer.

Figure 9: First level features 5x5 and 3x3

In Figure 9 The features for the first level are shown.
Although the 5x5 features lead to a better recognition,
they seem not to represent the actual colors in the images.
The 3x3 features doe a much better job here. Also note
the little graphs at the top, that represent the activation
levels of the first layer.

ix. Adding new objects

The network correctly classifies the robots, with some
errors on the orientation of some robots and problems
when multiple robots were seen in a single image. But
we also need to identify the ball and perhaps people on
the field. When we added these new objects, the whole
recognition system collapsed. It proved that the yellow
ball was too much like the lines on the field, while the
dark colors of the opponent’s robots made it very diffi-
cult to distinguish between people and robots. Images
of people disturbed the recognition process very much,
so we eliminated these for all following tests. In order
to make the recognition more fine-grained, we added
another convolutional layer to the network. That did
not seem to help much and as a result we noticed many
dead features. The Sudden Death Syndrome (SDS) is
caused by negative activation values, that get eliminated
by the RelU layer. A possible solution to this problem is
to decrease the learning rate, so we made this into an-
other hyper-parameter and retrained the new network.
This was an improvement, but the color differences be-
tween the ball and the lines on the field are still a big
influence.

Another thing that does not help is the fact that in the
distorted images the distinction between left and right
on the Cyan robots is too small to notice, even to the
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trained eye. So mis-classifications on this type of robots
is unavoidable.

x. Training Time

One of the reasons for starting this project is to develop
a fast Neural Network, that can be trained on-site during
a competition. Because we do not know the appearance
of the robots of our competitors in advance, we can only
train the network once the competition starts and we
can collect pictures of all opposing teams.

We will have to preprocess all pictures and then train
an network for every team that we will be playing
against. This should be able to be done in a small
time frame. Our aim for training the network was about
15-20 minutes. Luckily with the small network, running
a GTX-1070 GPU we achieve training times, consider-
ably less than this time. Currently training time is about
one minute, which compares favorably with the training
time of transfer-learning models, that can take hours or
even longer.

Selection of the background seems to influence train-
ing time. The system needs to learn many more param-
eters, which apparently takes time. But as described
before, using a neutral background achieved the best
results.
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III. Identifying Objects

To identify individual robots on the soccer field, we
need to use the Turtle images and use the trained
network to classify every robot in the image. The

small network was trained with the intention to learn
the features to identify robots and we want to apply
these learned filters to the full Turtle image. To better
understand what the learned feature filters represent,
we visualize the contents of the filters by implementing
a simplified version of the CNNVis system. [26, 27]

i. Performance of the Feature Selection Pro-
cess

It becomes much clearer when we can have an overview
of all activations of a layer, side by side, so we can see
what features are actually selected.

Figure 10: Activation map of the 3x16 and the 3x32 layers

In the 3x16 activations we see that the dominant fea-
ture (shown in the small image in the top) is the black
shape of the robot, while in the 3x32 layer the dominant
feature seems to be the top left corner of the image,
where no robot is visible. To find out what is going on
we would like to understand what these network fea-
tures actually represent. To analyze this we use another
visualization tool, that randomly takes 1000 samples
of the generated input images and finds the 9 highest
activations for every feature. It then shows these for the
selected layer, so we can see what the network is looking
for.

In Figure 11 is becomes clear that the orange and cyan
number plates are important selected features as well
as the black from the robot bodies. The yellow from the
ball seems to be missing. The 5x8 features however also
show combinations of green and orange and green and
yellow. Because every layer combines the features from
the previous layer, we need to find out what these other
features represent.

Figure 11: Selected features for the 5x8 layer and the 3x16 layer

Figure 12: Selected features for the 3x16 layer

Figure 12 shows the most important 9 activations for
the 16 features of the second layer. Here we clearly
see for instance that one feature selects the front cyan
number plate, while another one selects the left or right
cyan number plate. The same holds true for the orange
shirts. For deeper (and bigger) layers we expect many
more features to be selected, as we can see in Image 13

Figure 13: Selected features for the deepest 3x32 layer

Here we see many more features and it is very well
possible that here a single feature does represent an en-
tire class. Therefore we also calculate the class variation
for all features. The number in orange shows the aver-
age class number, indicating that the feature is shared by
several classes. A blue number indicates that all selected
features belong to the same class and that the feature
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actually represents the entire class. If all classes can be
represented this way, there is a good chance that we
will not need an additional Fully Connected Layer, but
are able to implement a Fully Convolutional Network
instead. This is shown in Figure 14

Figure 14: Class indicators for the deepest 3x32 layer
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IV. Locating Objects

Identifying robots is not sufficient, we also need to
know their location. Because we know the properties
of the convex mirror, we can calculate the real-world

coordinates of every robot, given its position in the im-
age. So we want to find out where every robot in the
picture is located. In order to do that we want to apply
the learned network to the bigger Turtle image.

In most of the studied approaches some kind of search
is made in the image to find possible objects and then
these are classified, using the trained network. Region
Proposals are commonly used for this [9, 8, 23, 21, 18].
But we have seen that the feature maps select properties
of the robots that might help in finding the Regions Of
Interest (ROI). Can we use the small network to show
the feature maps of robots in the larger Turtle Images.

i. Conversion to Fully Convolutional Net-
work

The purpose of the Fully Connected Layers is to perform
the actual classification. The last Pooling layer of the
network connects all its neurons to an intermediate layer,
which in turn connects to the final layer, which has one
neuron for every class. Through this mechanism the
training process can determine how every feature in all
layers needs to be updated to let the network recognize
the objects.

However, in the localization stage we will need to clas-
sify all objects in an image, using these learned features.
The design of the FCL makes scaling the small network
to the much larger Turtle images impossible. The solu-
tion is to convert these layers to a convolutional version.
Fortunately, FCL layers are equivalent to Convolutional
Layers [5], so we can easily convert them and this way
we get a scalable network. .

This conversion turns the network into a Fully
Convolutional Network (FCN) [19]. One of the
properties of a Fully Convolutional Network is that
it is scalable to different input sizes, so we do not
have to train a much larger network with different
sized objects, which would require considerably more
time, since the Turtle images are 582x582 pixels as
opposed to the 64x64 pixels of the small trained network.

So we define a new FCN with the same number of
layers as the original, but with the full size of the Tur-

tle image, and apply the learned filters to it. With this
modification we now have a way to visualize the Turtle
images layer by layer and by selecting the proper fea-
tures, we can show the different activations for every
filter in all layers of the Turtle image network. But when
running an inference on this network, it still classifies
just a single robot in its final layer.

Figure 15: Activation map for selected features of a Turtle image

Because these learned features do not represent a
classification, but a selection of parts of images that
occur frequently, we need to find a way to make the
classification of features represent a class. There are two
methods mentioned in the literature, that address this
problem:

1. Class Activation Maps. [29]
2. Pixel Based Image Segmentation. [19]

ii. Using the feature maps as class selectors

We have seen that the small trained FCN is capable of
activating the filters on all robots in a Turtle image. The
task of the final layers is to combine all these features
into a classification. But could we not use the learned
filters directly to create a classification. This is actually
being done by combining all feature activations for a
single class into a Class Activation Map [29]

So in our network we create a Class Activation Map
as part of the visualization process. These CAMs are
now used instead of the final classification layers. By
using the CAM, we can run an inference on the network
and see for every class, where the robots are located in
the image. All we need to do is to find the center of
the activated pixels. There is however a problem. The
deeper we get into the network, the smaller the image
gets and the best classification if achieved on the deepest
level. Another method is to classify every pixel in the
image and create a segmentation this way as in [19]

In both we need to take the information of a deep
level and up-sample this to a higher resolution and then
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apply the CAM to this input. To upscale the image
we use the Fractionally Strided Convolution (FSC),
called transposed convolution in TensorFlow. With the
up-sampled Class Activation Maps we can now find the
location of every class of objects in an image.

We are actually using a third method. During the
visualization as described before viii we analyze which
features in each layer are used to discriminate every
class. By combining this information, we are able to
create a complete list of all features of all layers that
contribute to the classification, as an alternative to the
final layers of the network. This makes it necessary to
combine the various activation maps at different levels.
So we combine the activation maps for all features of
a class. First we upscale all feature maps to the same
resolution and then we combine them into one activation
map. This is done efficiently using the á trous algorithm
[10]. This Class Activation Map is then used with the
Turtle Network to classify every robot, resulting in a
number of classified layers. In every layer we find the
location of the highest activation and treat this as the
center of the robot.

Using this classification we generate one picture, that
represents the relative positions of all robots that have
been found in the Turtle Image, which represents the
current Game State and is used for the learning environ-
ment.

iii. Interface with the Learning environment

The recognition of robots in the entire image is finally
converted to world coordinates in a bitmap with stylized
object markers to serve as input to the learning algorithm
as shown in 16.

This image serves as input to the learning environ-
ment and serves as in indication of the game state, the
robot is in. In this learning environment the game state
is compared to the existing State Transition Network
(STN), that is present in the Turtle robots and which
controls the actions the robot is taking. This network is
hand-coded as are all actions. The purpose of the learn-
ing environment is to determine if the current Game
State is a known state in the STN. If this is a new state,
the learning environment will be trained to find the best
solution for this game state and show its solution in the
form of a sequence of steps, leading to a better, prefer-
ably known game state. These steps are shown by the

Figure 16: Game State Image, showing position of nearby robots

learning environment, so the developers can decide if
they find the learned solution acceptable. If this is the
case, the learned behavior is transferred to the Turtle
robot, along with the new game state.

This allows a hybrid solution between the current,
hand-coded environment and a learning environment,
allowing both approaches to co-exist in the same robot.
This permits the execution of well established and highly
tuned game scenarios along newly learned behaviors.
There is also the possibility to take the learned behavior
and hand-code this for more efficient execution. It also
gives full control over what is being learned by the
robots, providing both insight in what the robot will do
in given circumstances as well as the ability to exclude
undesired automatic learned behaviors.

However this part of the proposed system is in a very
early stage and will be the subject of a future paper.
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V. Conclusions and Further work

We have shown that we can train a small Fully
Convolutional Network (FCN) with a lim-
ited number of examples to correctly classify

robots in the distorted image of a RoboCup MSL Soccer
Playing robot. By using the learned filters and combin-
ing the learned activation maps, we can both classify
and locate robots in the image and from that calculate
the positions of the competing robots in the field.

This information is used to identify the Game State
of the robot and will be input for a learning facility
that will find out how to act in the given circumstances.
This work is part of an ongoing project, where the next
step will be to match game situations with a Game
State Network, constructed with hand-crafted code. This
will allow newly trained behaviors to be merged with
existing conventional behaviors and resulting in a hybrid
solution, where existing technology can co-exist with
self-learning systems.

This project was started out of interest in combining
Good-Old-Fahioned-AI technology with modern self-
learning systems. In addition it will allow getting bet-
ter control over what is being learned and facilitates
the merger between existing hand-coded systems with
learning systems. We would like to thank the Tech-
nical University of Eindhoven and the community of
RoboCup Soccer teams in the region for their help and
support.
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VI. Appendix A - the Mini-Turtle

Network

Our goal is to create a small Neural Network that is
trained with pictures from 2 or more robot teams and
that is capable of recognizing robots in the omni direc-
tional Turtle images. We train a small neural network
that is able to recognize robots of the same size but in
different orientations and will attempt to use this net-
work to classify and localize robots that appear in the
larger Turtle image.

Because we know the exact mapping from any posi-
tion in the image to its size and orientation, we could
create a number of layers, each with different downsam-
pling rates to use the small network to classify those
places where a robot appears to be. To detect robots, we
will be using a feature map, trained with the original
robot images and create a hotmap of all places where
a robot might be present. These locations will be the
Regions of Interest where the classification will take
place.

After the study of existing approaches, their ideas and
backgrounds, we are now in a position to define the
design considerations for our own network architecture.
At this time we do not yet know if our approach is
feasible, so this first draft only lists the things to consider
and then we will start a series of experiments in which
different architectures will be tested.

The most important factors will be the speed of recog-
nition and the accuracy of the location where the robots
appear in the image. When we talk about robots, we also
include other objects like the ball and people that might
be on or around the field. Robots must be classified as
belonging to a team and should further be identified by
their orientation and possibly by their number plate. We
shall see how far we will get with this idea.

So the most important design criteria can be summed
up as:

1. The Input.
2. Input Image Properties.
3. Selecting Regions.
4. Classifying Objects.
5. Defining Robot Locations.
6. Other Objects.
7. Interface with the Learning environment.

i. The Input

The input for the recognition process is the Omnidirec-
tional Camera image. We will take successive samples
of the input, one image at a time, immediately after
processing the previous image. As soon as we know the
exact processing time of the Neural Network, we can
set a steady stream, where we can use double buffering
to get the next image ahead of time. Images may have
to be pre-processed, first to remove the borders and
just leave a circular image to prevent the surroundings
of the field to influence the recognition. Secondly we
may need to apply Local Contrast Normalization. The
resulting image will be an RGB image with enough res-
olution to perform the recognition task, where the size
of a robot at a distance to the border of the field will be
approximately 64x64 pixels.

ii. Input Image Properties

Because the image is formed by a conical mirror, all
robots will be rotated between 0 and 360 degrees. To
prevent having to learn all possible rotations for a robot,
we propose to split the image into 4 segments, where
each part will be rotated 90 degrees, leaving us with
images or robots rotated at ±45◦. That way we only
need to train rotations of 45 degrees. The size of robots
vary between 64x64 pixels and 128x128 pixels. So we
need some ranges of pixel sizes between these limits
as image size pyramids or a number of convolutional
layers with varying sizes. In order to find out how size-
sensitive the trained neural network is to sizes, we will
start with 6 layers, varying from 64, 80, 96, 112 to 128
and see how far we get with that. Input will always
be 64x64 and the image is scaled down from the given
sizes at 16 bit intervals vertically and with a stride of 1
horizontally. So we will have an average error of 8 bits,
which equals to about 16 cm vertically.

iii. Selecting Regions

There are two methods we can use to select regions. If
we use temporal input, then we use the differences with
the previous image. We need to take into account that
this will create false positives for objects on the field that
do not move like lines and static robots. Also we cannot
distinguish between a robots own movement and that of
other robots. However this approach may save a lot of
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time, since we do not have to scan the image for possible
objects.

The second approach is to use a moving window
approach, where we use a convolution over the image
and use the small network to classify each possible object.
We can do this by using all activation maps and find the
hotspot. Using that spot we can classify part of the image
for the top X hotspots of all activation maps. We could
set a threshold for the activation level. If all activation
maps are normalized, this might be a workable solution.

iv. Classifying Objects

We first train a small network based on 64x64 input
images. This network now has learned the feature maps
for the robots and other objects on the field. We then
take the entire image and generate activation maps by
replicating the learned features over the entire image,
which is 582x582 pixels. Using a 9x9 matrix over the
entire image we get a resolution of 576x576. We create
an activation map of 9x9 input images and this get the
heatmap for the entire image. From this heatmap we
then select all top 5 activation spots and classify all
these spots, using the small network. Using a threshold
we now get all possible locations where a robot might
be found. At various levels we need to down-sample
the original input, but we might also train a 128x128
network and up-sample the low resolution regions. It
all depends on how fast this network proves to be.

v. Identifying Objects

To identify individual robots on the soccer field, we use
the small Convolutional Neural Network (CNN) that
was described in the previous section. This network
has learned a number of filters, that extract information
from the image and classifies an object in its final layer.
We intend use these filters and apply them to the en-
tire omni-directional Turtle image, so we can identify
multiple robots. The problem is the that the final Fully
Connected Layers are not scalable and they only classify
a single robot.

vi. Localizing Objects

There are many different ways of finding an object’s
position in an image. One of the most used subjects
is number plate recognition in cars. Here, in general a
program first looks for a rectangle in an image and then

tries to locate the numbers or letters in that rectangle.
But how do you find a rectangle in an image? The
simplest way is to scan the picture left to right and top
to bottom. This however is a very time consuming way.
The challenge is to do this in such a way that we take as
little time as possible. There are several ways to achieve
this:

1. Only look at a limited area of the picture by elimi-
nating the area where it will generally not be found,
like in the sky. In our case that would be only inside
the field, so eliminate the corners, since the camera
image is always circular because of the mirror.

2. Start looking in the most likely place or the place of
most interest. This could be the center of the image
or in our case in the vicinity of the place where the
robot was last time.

3. Do the search in parallel, using multiple threads
or with the help of a GPU. Basically this is what a
Convolutional Neural Network does, scanning the
image and doing that in parallel.

The first two approaches are too slow. The third one
depends on the speed and capacity of the GPU. So in
most cases some combination of all three is the right ap-
proach. Several Neural Network architectures have been
proposed to solve this problem and we will describe
each of them in a little bit more detail.

However, our particular problem is slightly different
from the problem that has been tackled with these ap-
proaches. First of all, they all concentrate on multiple
classes of objects, which generally are part of a stan-
dard, upright and undistorted picture. Our problem on
the other hand deals with a limited number of objects,
mostly of the same shape and color combination. As
you can see in the figure 3, their size and orientation
depends mostly on their position, so that provides infor-
mation that is not available in the other kind of object
localization. We know exactly how a robot will be re-
sized and rotated at every location in the picture. So
we intend to use this extra information to simplify and
speed up the localization task.

That is the subject of the next section of this paper

vii. Important factors for localization

There are a number of properties of the camera image
that we need to take into account, when designing a
Neural Network architecture, and we will list all of
them with their prospective considerations.
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In most of the existing systems the approach is taken
to design a general-purpose solution that can be used
for many applications. Because designing and training
Neural Networks is hard, the idea of Transfer Learning
emerged in which a general purpose set of images is
used to make a feature extractor that may be used in
other domains as is done with ImageNet, Inception,
VGG, ResNet or COCO.

Our problem is simpler and much more specific. For
instance we always handle the same kinds of objects;
Robots, a Soccer Field, Ball and People. Their properties
are well know, like their sizes and aspect ratios. Also, be-
cause of the properties of the Omni-directional Camera
mirror, we know the relationship between the apparent
size of a robot and its distance and rotation in the image.

Many of the properties that are otherwise learned by
the network are known in advance in our case. This
should make it possible to create a dedicated network
architecture that is both compact and fast enough to
allow quick decisions during a competition and that is
also a lot simpler in structure than existing approaches.
If this idea proves feasible it might also offer insights
for other, dedicated applications, but our main goal is to
design a dedicated Neural Network that is supporting
the decision making process of the robots and that may
also be used to learn optimal behaviors, preferably in
real time.

So in summary, our goal is to design a simple and
fast recognition procedure that forms the basis for a
real-time learning mechanism for soccer playing robots.
The following characteristics are relevant to design such
a system:

1. The center of an image is always the robot itself and
must be ignored.

2. The rotation of the robot is always from the center
through its heart. This could be calculated and
the apparent size of the robot in the picture also
determines its distance. So we can train a network
to only recognize a limited number of rotations. So
we could do the following:

(a) For every location calculate the distance and
rotation. Then normalize that part of the im-
age so we always have images of the same size
and rotation variation. That simplifies process-
ing but is that possible with existing Neural
Networks?

(b) We could split the entire picture into four quad-
rants and rotate each part, so all four of them
always have the same orientation. That elimi-
nates the rotation element and leaves only the
scaling factor.

(c) Scale parts of these images based on their ap-
parent distance, so they all get the same input
size.

3. Let the Neural Network do a lot of this pre-
processing, so it can be done in parallel by a GPU
or a group of processors.

viii. The Learning Environment

The Learning Environment is of such a large magnitude
that we will dedicate a separate paper to this. Here we
will describe the general ideas and considerations for
design of this part.

In early AI systems in the good old-fashioned days
of AI (GOFAI), all systems were based on heuristics,
operating on the Symbolic Level and based on explicit
knowledge. With the great successes of Neural Network
technology most processing is now done with implicit
knowledge which has the disadvantage that it is hard to
find out what has been learned and where the knowl-
edge is located.

This creates the problem that we do not know what
these systems might do, creating some fear for runaway
systems that may become uncontrollable. Dennett [4]
suggests that we should not employ autonomous robots
unless their creators are held responsible for their ac-
tions. They can only do so if they fully understand what
these self-learning systems are doing. Of a much lesser
consequence is that we have no idea how to create sys-
tems that have to learn many different actions, based on
information from their environment.

End-to-end learning makes it unnecessary or even
impossible to know what a system is learning and how
it is able to perform its tasks. If we consider playing
soccer as an example, we can imagine that during a game
there are many game situations and that a player learns
the best way to behave for every game situation. Every
time that the robot encounters a new game situation it
should learn how to handle. It also means that in every
case it must be able to determine if this situation is one
that it has encountered before or that it is very similar
to such a situation.

Early AI systems employed a variety of situation-
action pairs to determine what the most appropriate
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action would be. Systems that implemented this type
of approach are rule-based systems (RBS) with heuris-
tic rules, or augmented-transition-networks (ATN), or
hidden markov models (HMM). What they all share is
some kind of pattern matching that determines the state
the system is in, and the action to take. Many differ-
ent names for these were employed like the IF clause
or the left-hand-side or the situation or state and the
THEN clause or right-hand-side or the action part. In
many cases some kind of probability as assigned to one
or both sides by things like Certainty Factors, Bayesian
probability or Fuzzy Logic.

In current systems game situations are mostly de-
scribed as state-transfer-diagrams, where in every state
the entry- and escape conditions are described. In the
early 90s Rodney Brooks designed the Subsumption Ar-
chitecture that allowed a gradual buildup of basic behav-
iors that could be extended by adding higher conceptual
levels, without disturbing earlier, already proven layers.
It had the advantage that if something went wrong in
higher levels, the older, proven layers would take over
to create a robust system.

When employing a Neural Network, patterns can be
learned that classify the game state and could directly
be coupled to actions. However this approach loses the
insight and structure that would otherwise be gained by
manually building such a system. What we are propos-
ing is to create a hybrid of the two approaches, marrying
the symbolic level of situation-action pairs with Neural
Networks. We let the Neural Network learn patterns
and match these with the hand-crafted system. All be-
haviors that have been programmed into the existing
system will be used when appropriate. They are fast and
efficient and give a good insight into what is happening.
When a pattern is detected that is not present in the cur-
rent structure, the system will generate the appropriate
classification parameters and learns the behavior that
is associated with this situation. This combination is
then added to the symbolic structure. This way we have
control over every game situation and also have insight
into the gaps that exist in the current model. A self
learning system could explore this state space and learn
to fill in the missing parts or could detect unknown new
situations during a competition. It could also exercise in
a simulation environment and find out new situations
without actually playing a competition.

With this approach we can blend the symbolic with the
deep learning level and combine hand-crafted solutions

with learned behaviors. In addition it allows both real-
time and off-line learning of new behaviors, while at the
same time keep close control over what is being learned.

To develop such an environment we need to do the
following things:

1. Create a small network to classify robots and the
ball

2. Create a network to find the position of all robots
in a camera image

3. Create a world model based on the robot field of
vision

4. Create a classifier for the game situation for every
robot

5. Create a state transition network (STN) with state
classifiers

6. Create a network that learns optimal behaviors for
a certain state

7. Create a simulation environment to exercise game
situations

8. Make an interface between the robot and the simu-
lator

9. Let the robot report unknown game situations
10. Integrate the Subsumption Architecture with the

STN
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VII. Appendix B - Different Existing

Neural Network Approaches

In order to understand the network that we will be using
to localize the robots in a Turtle image, it is important
to first study the various approaches that have been
developed so far and see how most of the technical
challenges have been solved. This may lead to a deeper
understanding of the properties of the various Neural
Network architectures. Because this study is mostly
included for completeness and to explain how we can
design a new network architecture, this section may be
safely skipped if you are mostly interested in the way
that our Neural Network operates.

Because there are so many different Neural Network
types, we include a schematic overview of existing archi-
tectures, found at the site of the Asimov Institute, called
the Neural Network Zoo.

Figure 17: The Neural Network Zoo

We assume that Neural Network architectures for

whole image recognition, like Convolutional Neural
Networks (CNN) are already well understood and are
mainly concentrating on localizing multiple objects in
entire images. So apart from the elementary moving
window approach, a number of CNN solutions have
been proposed. A general introduction to some of these
networks is given in [20]. We will give a brief overview
of the most important approaches and comment on each
of them, leading to the selection of a target solution on
which we will be concentrating:

i. Recurrent CNN [16]

Recurrent Neural Networks are generally used to learn
about time series, like in speech recognition, music or in
action sequences. They certainly have a place in learning
robot behaviors, but the application of them to object
recognition is something that begs for an explanation.
According to the paper, the neocortex where recogni-
tion happens has many more recurrent connections than
feed-forward connections. It is thought that this infor-
mation adds context to the recognition ability of the
brain. This type of network learns to better classify parts
of an image, using input from its neighboring pixels and
adds context in this way. With fewer parameters these
networks achieve better performance, which could help
speed up our target networks. The paper also stresses
the importance of RELU to suppress the vanishing gradi-
ents, while dropout is used to prevent the network from
overfitting. It also mentions the Network In Network
(NIN) [17] approach, which is something our proposed
network will most probably employ as well. Instead of a
Convolutional Layer, this type of network uses Recurrent
Convolutional Layers (RCL).

This approach is consistent with the current trend
to increase the depth of networks, without increasing
the number of parameters, which we also see in other
network approaches. The recurrent aspect has the ad-
vantage that it also learns to take information around
the object into consideration, thereby adding context. It
is also interesting that all layers have the same number
of feature maps and filter sizes, which makes the archi-
tecture simpler to design. We see many of these ideas
again in the other approaches that follow. The paper
also indicates that dropout played a significant role in
achieving the results of this network against other archi-
tectures. Another note from this article is that all tests
were performed on MNIST and CIFAR while preprocess-
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Figure 18: Structure of a Recurrent Convolutional network

ing all input images by subtracting the mean pixel value
from all pixels, called Local Contrast Normalization. We
need to try if that also influences the recognition in our
models.

ii. Region Based CNN (R-CNN) [9]

Convolutional Neural Networks are mostly used for
classification. Sliding window detectors to test if there
is an object at a specific location was the most used
way of finding the position of an object. The R-CNN
approach added so-called Region Proposals and is em-
bedded into a CNN network, so it is able to both classify
and locate multiple objects in an image. Making region
proposals reduces the number of places where tests for
an object are made compared with a sliding window
approach. These tests are performed using a Support
Vector Machine (SVM), a more conventional classifica-
tion method, not based on Neural Networks. The main
disadvantage of this approach is its speed. Classifying
a single image takes about one minute. The paper also
explains that the contribution of the Fully Connected
Layers (FCL) is considerably lower than expected and
that Fully Convolutional Networks are equally able to
classify objects. This method achieved substantial per-
formance gains over earlier conventional classification

methods, like HOG pr Haar features. It also combines
the power of Convolutional Neural Networks with the
classical Computer Vision tools. However it is slow and
not fit for real-time image processing.

iii. Fast R-CNN [8]

With this approach, also a CNN is trained for feature
extraction. But other than R-CNN two independent clas-
sification streams replace the last Fully Connected Layer,
one for the selection of Region Of Interest (ROI) feature
vectors and a second one for bounding box regression.
Both of them are implemented with Stochastic Gradient
Descent (SGD) and are therefore end-to-end trainable by
the network in a single pass. This results in a consider-
able saving in time and additionally a better recognition
performance. Where the R-CNN test time was about
one minute per image, this approach takes only 0.2 sec-
ond. When using an experimental truncated Singular
Value Decomposition (SVD) this time is reduced to 0.08
seconds. Training time is also much lower, with 2 hours
compared to 28 hours with R-CNN. So this approach is
much more suitable for real-time applications. Please
note that these reported times do exclude the time for
generating the region proposals, which are still con-
siderable and not done as part of the Neural Network.
Another approach developed about the same time was
SPPnet and achieves comparable results. However the
literature continued concentrating on the Fast and later
Faster R-CNN approaches.

iv. Faster R-CNN [23]

With this improvement over Fast R-CNN the Region
Proposals that were previously a separate step are now
generated from the same CNN and therefore adds no
extra cost. It achieves image detection with a frame rate
of 5 fps, using a fast GPU.

This type of network can be trained end-to-end and
also detects multiple objects in near real-time. So this
is an important improvement over Fast R-CNN. By re-
using the CNN to generate region proposals, a new type
of network is introduced, dubbed a Region Proposal
Network (RPN).

It shares the same Convolutional layers that are used
by the CNN already at virtually no extra cost. The RPN
is a Fully Convolutional Network (FCN). So this type of
network can be seen as a Fast R-CNN combined with a
RPN. We will describe a bit more details about this RPN

22



Locating MSL Robots • Feb 2018

Figure 19: Structure of Faster R-CNN network

and its architecture as it directly applies to our goal of
creating a fast and small network for detection of MSL
robots.

A small network detects features in the feature map
and outputs two fully connected layers from the last
Convolutional Feature Map. One layer generates a box
regression layer (REG), the other generates a box clas-
sification layer (CLS). The mini-network is in our case
the single robot classification network, trained with pho-
tographs of the actual robots, distorted, rotated and
warped so they resemble robots in the Turtle omni-
directional camera image.

The REG and CLS layers are implemented as 1x1 con-
volutional layers. In Faster R-CNN these points are
called Anchors and are proposals of different scales and
aspect ratios. In our case however, the location in the
image actually determines the size as a result of the dis-
tortion properties of the omni-directional conical mirror.
The aspect ratios are known and do not change. So our
region proposals will be very sparse and much more
reliable. What is important in this approach is to design
a loss function that properly defines the reliability of the
region proposals, combined with the classifications, so
the network learns to optimize both at the same time.
This paper gives useful examples on how to do that.

v. Mask R-CNN [11]

This approach is an extension to Faster R-CNN and
is designed for image segmentation. Classification is
now done on a pixel-by-pixel basis so that full object
maps can be generated. The Faster R-CNN network
is extended with several extra layers to achieve this
and create a small overhead compared to the original
implementation. The approach does not seem relevant
for our purpose at this time.

vi. You Only Look Once [21]

The networks we investigated so far all attempt to de-
crease the time spent in finding out where objects are
located in an image. The main strategy is to find Re-
gions Of Interest (ROI) and several methods are used
for that. They all share the idea of region proposals,
where the network checks if there actually is an object
that can be classified. In most cases this means using
feature detectors like Haar, HOG or SIFT.

The Yolo approach takes a different view by creating
a Fully Convolutional Network in which a number of
layers is looking at parts of an image in smaller and
smaller sizes. Each of these layers is evaluated in parallel,
so it completely eliminated earlier region proposals, but
looks at them all at the same time. Hence the name You
Only Look Once (YOLO).

This increases the size of the network and also relies
on a fixed size for the various layers. It is consider-
ably faster than previous methods but depending on the
depth of the network it may be less accurate in deter-
mining the location of an object. Please note that this
speed is mainly achieved by the use of a GPU, because
many calculations are required.

For classification it uses a small network like a NIN
and for location it trains input bounding boxes as a
regression task. Generally Neural Networks are used
either for Classification or Regression. Classification
returns the class of an object, regression returns a value.

Yolo works by first training a network with images
for which the ground truth defines both the bounding
box and the class it belongs to. Once the network is
trained, input images are split into a grid of image parts.
At each part of the grid, the network checks if there is
a recognizable image. The output is a class probability
and a regression of the bounding box. There may be
a partial image in a grid cell and so several grid cells
together may form an entire object. This evaluation is
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done for the entire image in a single CNN, consisting of
several layers, each with different grid sizes.

Figure 20: Working of a YOLO network

So the entire network consists of a number of Convo-
lutional Layers for feature extraction and a number of
Convolutional Layers with different grid sizes, that each
classify all elements of grids of smaller sizes. Together
these layers provide the bounding boxes and classifica-
tions for objects found in the entire image.

Figure 21: Structure of a YOLO network

Three other systems exist that contain elements that
YOLO is based on, called Deep MultiBox, OverFeat and
OverGrasp. The regression system of YOLO is based on
OverGrasp.

vii. Yolo9000 [22]

YOLO-V2 is an improved version of YOLO. Although
YOLO is fast, it made many errors on localizing smaller
objects. The improved version of YOLO deals with
these problems by removing some of the pooling layers,
thereby increasing the image resolution of the classifiers.
Also the fully connected layers are removed and replaced
by anchor boxes. By making sure that all layers have a

predefined size, that has a clear center position, the final
layer can be made into a 13x13 feature map. Instead of
predicting class and bounding boxes for every grid cell,
it now generates a bounding box and classification for
all anchor boxes. This approach was later replaced by
a method to predict five bounding boxes for every grid
cell, to increase accuracy.

Another improvement was to introduce a hierarchi-
cal classification system, called WordTree. This makes
classification much simpler. In our current system we
already use a hierarchical classification scheme, using
Object Type, Team, Orientation and ID as subcategories.

Figure 22: Stucture of WordTree

Because Yolo is based on Darknet (a special implemen-
tation of a Neural Network), all pre-trained networks
need to be translated to another format to be usable in
TensorFlow or Caffe. There are many example imple-
mentations available on GitHub. One that is particularly
interesting is Tiny-Yolo that runs on smaller machines,
like iPhone, Android, Raspberry-pi or the Movidius
Neural Compute Stick (NCS), which we will describe
later in this paper.

viii. Single Shot Detector SSD [18]

The Single Shot Detector is a Fully Convolutional Net-
work (FCN) that generates bounding boxes over differ-
ent scales and aspect ratios. It does not generate region
proposals but finds the best match for every feature map.
So far near real-time speeds have only been achieved
at the cost of decreased accuracy. The system receives
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ground truth bounding boxes and trains a network with
these. It then defines a number of convolutional feature
map layers with decreasing grid sizes. This is different
from Overfeat and YOLO which use single scale feature
maps.

In each of the layers it defines a number of default
boundary boxes. During training then the offsets of the
ground truth boxes from the default boxes are calculated
and learned as part of the network. The Network cal-
culates the loss between the actual bounding boxes and
the default boxes and learns the actual sizes in this way.
In the same way it also learns the aspect ratio of each
box, so both the offset and aspect ratios are learned.

Figure 23: Single Shot Detector architecture

Just as with other networks that use region proposals,
the ground truth box sizes need to be assigned to spe-
cific outputs. Therefore the selection of the default boxes
becomes critical and the selection of scales and aspect
ratios are an important part of designing the network.
Because we are using objects with well-known prop-
erties, this should bot present any real problem. This
approach is a high contender for our intended network
design.

ix. Deconvolutional SSD [6]

As we have seen with the Fully Convolutional Network
(FCN), upsampling of pixels is an important part of
some network architectures. This is done mostly by
deconvolution. Actually the term deconvolution is a
misnomer, the actual process is transposition and is
therefore called Transpose in TensorFlow. In a Fully
Convolutional Neural Network, deconvolution is used
to get back the original input pixels and this improves
the accuracy of the last layer. Deconvolutional SSD is
therefore a combination of the FCN and SSD approach.

In Figure 24 we see the so-called hourglass model
in which successively smaller layers create a bottleneck
where in the narrowest part the most compressed infor-
mation about the image is concentrated. From this a
number of layers with increasing size are used to find

Figure 24: Deconvolutional Single Shot Detector (DSSD) architec-
ture

the location of objects in the proper scale. This upscaling
from lower layers is done with deconvolution. This type
of network architecture is also referred to as the Encoder
and Decoder stage of the network.

Another thing that becomes clear in all of these studies
is that they depend on transfer learning, where large
generic models are used as feature extractors. Also many
experiments are done to find out what the most common
aspect ratios and object sizes are. This information is
then used to optimize the networks. In our case we
always know in advance that the aspect ratios of all
objects are the same with exception of the ball. Also the
size of each object varies with its position in the image
with a well-known factor, so we are in a much better
position to design these parameters than networks which
rely on generic classes and unknown objects. We will
talk more about that in the section about the architecture
of our own model.

x. Deep Residual Networks [12]

Deep Residual Networks are one of the most important
innovations in Neural Network research of recent years.
There are two important aspects to this approach that
deal with improving the internal validity of the weight
matrices of a network layer. It is desirable for a network
layer to represent a function that accurately reproduces
the properties of the input. This is also know as the
identity mapping of a layer. The difference between the
input and the output of the function is the residual and
the purpose of the approach is to let each layer learn an
identity mapping as well as its residual.

This is achieved by constructing a layer out of several
smaller layers (mostly 2 or 3) that are connected in such
a way that multiple paths between the input and the
output exist. This gives such a network a lot of flexibility
in learning and makes learning not only more reliable
but also faster, in spite of its added depth. In Figure 25
part B these different paths are clearly visible.
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Figure 25: Residual Network Ensemble Block Layout

Deep Residual Networks are designed to allow the
construction of networks that are considerably deeper
than previous networks, but are easier to train. As an
example the CIFAR 10 dataset is given, which usually
has 3-5 convolutional layers. With a Residual Network it
may have more than 100 layers. There has always been
the suspicion that deeper networks lead to better recog-
nition [24], but attempts to create deeper networks have
always suffered from the vanishing gradients problem,
where the weights in deeper layer became so small that
they no longer contributed to the recognition task.

The Residual Networks are based on building blocks,
each with two or more layers and a shortcut from the
input to the output layer as can be seen in Figure 26.
In the example with three layers, a bottleneck design
is used, where the input is first scaled down and then
expanded again in 1x1, 3x3 and 1x1 convolutions. In
spite of the fact that there are considerably more layers,
the total number of parameters and thus training and
recall time remains the same, while achieving a higher
accuracy.

Figure 26: Residual Net Building Blocks

One thing that also became clear from this paper is
that it is customary to process the input images by sub-
tracting the mean pixel value for every pixel. So that is
an important issue to also try in our target networks.

Neural Networks are very much inspired by their bi-
ological examples, as described earlier in R-CNN [9].
Here we seen another example, where brain research
has inspired new developments with the introduction

of Residual Network Ensembles, based on the semi-
nal work of Gerald Edelman in Neural Darwinism [7].
Residual Network Ensembles are described in [25]. It
explains clearly why deeper Residual Networks are just
as efficient as their shallower counterparts.

In this paper some interesting experiments are done,
where is shown that dropping layers in a Residual
Network has a very low impact on performance, while
a CNN is severely impacted by such modifications.
So there is clearly something important going on in
Residual Neural Networks, that we have to take into
account.

It should be noted that GoogLeNet uses a further de-
velopment of this idea by defining ensembles of different
micro-architectures, called inception modules. The en-
sembles and inception modules are examples of these
micro-architectures. This forms the basis of the very
popular Inception system that is used for many transfer
learning projects.

Further developments also take place in macro-
architectures where more pathways between layers
are being created, like is done in Highway Networks.
Here more skips between layers are used to allow the
network to learn more diverse functions. In all these
newer approaches more depth is introduced to achieve
higher accuracy while maintaining efficiency. These
approaches are referred to as bypass connections.

So we see a further trend in the following areas:

1. Micro Architectures with bottleneck designs and
multiple paths.

2. Macro Architecture with more levels and skip lay-
ers.

3. Bypass Connections to connect higher layers with
deeper layers.

xi. Region Based FCN (R-FCN) [3]

Region Based Neural Networks like Fast CNN or Faster
CNN rely on costly region proposals. The Region-FCN
approach uses a Fully Convolutional Network to classify
and localize object in entire images. There is always the
contradictory goal of translation-invariance in recogni-
tion and translation-variance in object detection. The
method uses position sensitive score maps to overcome
this problem. It is based on Residual Networks and
adds some new features that improve on the Residual
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Network approach. Instead of adding region specific
layers, this method adds a region-specific pooling layer
to every convolutional layer. The method still employs
a Region Proposal Network (RPN) but this is entirely
convolutional and shares the features with the entire
network.

Figure 27: R-FCN Network architecture with RPN

This method is based on ResNet and removes the last
layers and replaces them with the ROI pooling layer.

xii. Capsule Nets [13]

One of the major shortcomings of Object Recognition
with Neural Networks is their inability to maintain spa-
tial integrity in the final layers of a network. In every
layer a part of this spatial information is lost. For in-
stance to recognize a face, the network looks for eyes, a
nose and a mouth. But if the position of any one of these
parts is in the wrong place, the network does not notice
this and still recognizes the object. This problem is being
addressed in Hinton’s recent work with Capsules.

Figure 28: Capsules in Convolutional Networks

Instead of Pooling lLayers or a Fully Connected layer
in the later stages of a network, Capsules are used, that

learn the orientation of features of a particular layer, us-
ing an auto-encoder. The network will not only learn to
recognize the features in a Capsule, but also its spacial
dependency, which makes it much simpler to recognize
an object by its parts. Features that are recognized as a
whole are then propagated to deeper layers, resulting
in full object recognition. This also helps in determin-
ing the orientation of the object, because the network
keeps information about the spatial dependency of all
recognized Capsules.

Capsules seem a promising way to allow recognition
of rotated and scaled objects, while maintaining local-
ization information like we need in our project. So we
will test this approach as part of the network we are
developing.

xiii. SqueezeNet [15]

All previous methods concentrated on accuracy of recog-
nition and speed of detection but always based on pow-
erful computers with multiple GPUs. Here speeds of
more than 40 fps have been achieved. There are how-
ever more and more applications where there are no
fast systems of GPUs are available, like smart-phones,
tablets, drones and robots. In our case the robots have a
reasonable processor and a small GPU, but because they
are battery operated their power consumption must be
as low as possible.

Therefore several new approaches have been devel-
oped in which the recognition task is to be done on
small, mobile and power restricted devices. The first one
we will investigate is SqueezeNet.

The main trick to increase speed and lower power
consumption is to decrease the number of parameters
and model size, without degrading performance too
much. Basically there are two approaches to achieve this
goal. First of all there is network pruning, in which all
values below a certain value are set to zero and then
retrain the network with all zero values removed, The
second method is quantization where all floating point
values are reduced to small integers, thus saving space
and computation time.

SqueezeNet uses a micro-architecture with modules
called Fires, based on 1x1 and 3x3 convolutions. Down-
sampling is delayed to deeper layers to keep the total
number of parameters low.

In addition it uses Deep Compression, which consists
of both network pruning and quantization to 8 bit in-
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Figure 29: Squeeze and Expand strategy of SqueezeNet

tegers. A special version of 8 bit quantization, called
Ristretto is also used, which we will not describe here in
any more detail. Ristretto achieves a less than 1% drop
in accuracy with 8 bits compared to 32 bit values.

On the macro level, SqueezeNet introduces several
bypass strategies between Fire levels. These bypasses
make sure that a residual function is learned between
the layers that are connected by the bypass. Simple
bypasses require that the number of input and output
channels are the same and therefore do not create any
additional parameters.

xiv. MobileNets [14]

MobileNets is another approach to create condensed
networks that can run on mobile devices. It uses a tech-
nique called depthwise separable convolutions [1] that
we saw before in the ResNet summary. [25] This paper
also refers to some other approaches to make networks
smaller and faster like Vector Quantization, Huffman
coding, Structured Transform Networks, Deep Fried
Networks, Network Distillation and Low Bit Networks.
We will not go into details about these, but instead con-
centrate on the ideas behind MobileNets.

Depthwise separable convolutional layers consist of a
dense 1x1 pointwise convolution and a 3x3 depthwise
convolution. The pointwise convolutions are much more
efficient in calculation and therefore save a lot of pro-
cessing time, since 95% of the time is spent in these
layers.

The MobileNets also introduce two hyper parameters
that allow an easy selection between speed and accuracy
of the network, without having to redesign the architec-
ture. These are called a width multiplier and a resolution

Figure 30: Depthwise Separable Convolution structure

multiplier. By varying these two hyperparameters the
size/speed and accuracy of the network can be changed.

xv. Realtime Detection on Raspberry Pi [28]

Most neural networks are developed for high-end CPU
and GPU systems. This paper describes the development
of a network targeted for a Raspberry Pi, as we intend
to use for the mini-Turtle robot. The performance of the
proposed system is measured in three dimensions, as is
the case in most other systems: mean Average Precision
(mAP), detection speed in frames per second (fps) and
model size (mostly in mB or number of parameters).

This work is based on a combination of SSD [18] and
MobileNets [14] and achieves a performance of 20x faster
and 15x smaller than Yolo [21].

This network is using the same Depthwise Separa-
ble Convolutions (DSC) as MobileNets, but other than
all systems before, this system relies on a steady in-
put stream and makes region proposals based on the
differences between successive frames. This temporal
detection model is well suited to our intended use case.
But if no change occurs, the region proposals will not be
generated. This saves a lot of time in finding Regions Of
Interest (ROI), but introduces another problem in mak-
ing sure that steady objects that were detected earlier
are kept in memory somewhere.

Although this model does not appear to deliver real-
world applicability, it generates a number of interesting
ideas that we will include in the considerations for our
own model.
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Figure 31: DSC Architecture

29



Locating MSL Robots • Feb 2018

VIII. Appendix C - Considered

Localization Approaches

The approaches listed in this appendix are the ones that
inspire our work most. The ideas and sometimes the
examples were used in building our own network.

i. Weakly Supervised Learning with FCN [19]

ii. Semantic Segmentation [19]

iii. Learning Deep Features for Disciminative
Localization [19]

iv. Understanding Neural Networks Through
Visualization [19]

v. Fully Convolutional NN [19]

Most Neural Networks for classification and segmenta-
tion consist of a number of Convolutional Layers, fol-
lowed by one or more Fully Connected Layers (FCL). In
this approach there are no Fully Connected Layers, but
all layers are of the Convolutional type.

Figure 32: Fully Convolutional Network (FCN)

This type of network is most useful for image segmen-
tation, where the features in each layer are used in the
deeper layers to make a pixel-by-pixel prediction about
the class of every pixel, thus leading to very accurate
image segmentation. This could be important for both
classification and localization of objects in an image. It
does not need region proposals nor dense classification
layers.

In most previous approaches multi-scale pyramids are
used to handle different sizes of objects. In this FCN
approach these pyramids are no longer needed. The
model is trained on whole images with whole-image
ground truth information. The main difference with

earlier networks is that these learn nonlinear functions
to classify data, while a convnet learns deep nonlinear
filters. To be able to define object boundaries on the
deepest layers, we need to get back to the original pixel
level. This is done by a Deconvolutional Network that
up-samples the coarse pixels in the last layers back to
the input level.

Figure 33: Comparing FCL to FCN setup

What we see in Figure 33 is the difference between
the two approaches. In the top part the last FCL layer
classifies the image as a cat. In the FCN version the
output is a heat-map of the cat, thus both classifying
and locating the object. The layers in between are all
convolutional with in the last part some Deconvolutional
layers that are up-sampling the image to gain access to
the input layer.

Another advantage is that the FCN approach is gener-
ally more than 5 times faster than previous approaches.
The up-sampling however takes additional time, which
can be gained back by using the so-called à trous wavelet
transform. [10]

vi. Network In Network (NIN) [17]

This approach differs very much from other architectures
in that is uses a number of stacked 1x1 convolutional
layers. This allows the combination of spatial properties
of a layer and transferring this information to the next
layer. Although it may seem that this contradicts the
principles used in earlier approaches it does allow the
combination of convolutional features in a better way
than just adding more layers to a network.

In section xiii about creating smaller networks like
SqueezeNet we will describe these convolutional layers
in more detail.
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Figure 34: Architecture of NiN network with 1x1 Conv Layers
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IX. Appendix D - The developed software

In this section we describe the developed software and
show some examples of the system in operation. Because
this is part of an ongoing project, new versions may
become available, so refer to the GitHub repository for
the most recent information.

X. Further Considerations

1. ATN’s
2. Subsumption Architecture
3. Speed vs Accuracy.
4. Network Architecture.
5. Scaling and Aspect ratios.
6. Depth of the network.
7. Subtracting mean pixel value, Local Contrast Nor-

malization.
8. Temporal Region Proposals
9. Frame subtraction, movement detection

10. Neural Darwinism Gerald Edelman
11. Stochastic Gradient Descent - Random behavior
12. Asymptotically - with reference to an insignificantly

large difference
13. a Trous algorithm - Wavelet transform
14. Network In Network
15. Things learned from the literature.
16. Structure of learned network derived from body

structure
17. Learning to identify real-world situations
18. Explaining learned behavior
19. Dennets robot requirements
20. Region Proposal Network from Faster-R-CNN
21. Movidius Neural Compute Stick
22. SSD is likely candidate
23. The use of Ensembles
24. Region Based FCN
25. MobileNets
26. Properties of Movidius compiler
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