
Learning MSL Team Behavior from Digitized Game Logs

Peter van Lith

Technische Universiteit Eindhoven
vanlith.peter@gmail.com

March 18, 2020

Abstract

First Draft
This is a first draft of a paper, describing a project to learn the behavior of competing MSL Soccer Teams. This draft is meant to
explain the way the project is being executed and will capture results and insights as they are achieved.

The goal of this work is to create a system, consisting of a collection of networks that learns the behavior of competing teams
from digitized log files of past competitions. This encapsulated behavior will be used in the TURTLE simulation environment,
to test new approaches against our known competitors. The input consists of log files of actual competitions, containing position
details of all players, the ball and information about the game situation like ball possession and starting conditions like kickoff,
corner and throw-in. The output of the network consists of the actions of all team players, including ball movements and an
indication if the current situation represents a threat or an opportunity.

Current Status
This project is in an early stage. The document serves as a design blueprint and also as a report of the achievements of the
project as we go along. It contains short descriptions of all consulted papers as well as considerations why we took certain
decisions. At a later stage parts of this document will serve as input for one or more papers to be submitted for publication.

The Network based simulation environment is working, as well as the facilities to read in the log data and select samples from
it. A first version of the Set-Pieces editor is working and part of the KNVB Futsal Coaching Manual examples are included.

Where we first concentrated on using a DDRQN neural network, we are now extending this with additional facilities to
provide more detailed analysis and an explanatory capability. We are concentrating on learning the intentions of individual
players in time-series of actions in order to better describe a team’s strategy. To this end we investigate techniques like
Conditional Random Fields (CRF) and Hierarchical Attention Networks (HAN) to allow descriptions of actions on a symbolic
level, where symbols are grounded in the soccer-playing world. A first DDRQN network has been coded and is working, but
we need to extend this with the facilities to learn intentions.

The first part we are developing is the classification of Game Situations, which includes Formation Analysis. We found
many more articles on this subject, mainly from the Sports Analysis community, now included in this study.

To anticipate the forthcoming TensorFlow 2.0 version, the current implementation needs to be re-implemented in Keras
instead of native TensorFlow.

1. Preamble

First we describe the motivation and design goals
for the intended system. We will then explain the
way in which we use the information, collected

in digitized log files from competitions of the past
years. We then describe how a collection of Neural
Networks captures the responses of our competitors to
game situations. Finally we explain how this network
is used in a simulation environment, developed to test
our approach.

1.1. Reinforcement Learning

Many different approaches to learning have been ex-
plored in the past 10 to 20 years. Robotic Soccer has
been a popular subject for this topic and in this paper

we explore the most important ones. We intend to
use the most suitable of these approaches to create
a system that is capable of learning a model of the
behavior of competing teams. Although Opponent
Modeling is a frequently explored topic, almost all
approaches concentrate on implicit models to let a
system learn the best policy. We want to concentrate
on learning an explicit model, in which we capture
the strategy of competing teams and we want to distill
from such models not only the actions of our oppo-
nents but also to find the changes, teams have made
during successive years. This information will help
us to determine our and their weak and strong points
and to decide, which parts of our strategy we need to
concentrate on. Only after having mastered building
such models, will we be in a position to let our robots

1

mailto:Peter van Lith


Learning MSL Team Behavior 8.2 - Aug 2019

learn to improve their performance during competi-
tions by learning from their mistakes. Such a real-time
continuous learning approach is known as Continual
Learning.

1.2. Continual Learning

The long-term goal of the study to learning approaches
is to allow our MSL Turtle robots to learn how to play
soccer. Much research into learning how to play soccer
has already been done, but generally in different en-
vironments like the Simulation League and the Small
Size League. The Midsize League differs from these
in that all robots are fully autonomous and commu-
nicate with each other, while the other approaches
work in a shared environment. Most learning ap-
proaches are based on batch environments, in which
many examples are presented at the same time. This
type of network was used in an earlier phase of this
project in which we attempted to recognize and clas-
sify robots, playing in a competition [104]. In that case,
pre-collected images were used to train a static neural
network that was capable of identifying and localiz-
ing robots, based on their team membership and their
position in the camera image.

When confronted with ongoing competitions, such
an approach is not feasible. Robots need to be able
to learn from situations encountered during compe-
titions, which means that new situations are contin-
uously presented by the robot’s sensors and camera.
This presents a big problem for existing learning sys-
tems in the following areas:

1. High impact events cannot be handled well. All expe-
rienced events are treated with the same impor-
tance. In real-live situations high-impact events
should be learned much faster than low-impact
events. Current neural networks cannot make this
distinction.

2. Network reconfiguration. As new situations occur,
new classes may be needed, which means that the
network architecture must change. With current
technology this means that a new architecture is
created manually and all learned situations must
be trained again. It also means that all input
situations need to be kept for later re-training.
Newer approaches allow dynamic expansion of
the network and retrain only those neurons that
are affected by the new information.

3. Catastrophic Forgetting. When a network is trained
with new events, existing networks quickly forget
older events. To prevent this, older events need

to be kept and the network needs to be retrained.
Some newer approaches use the trained weights
of the network to reconstruct the learned inputs
and periodically retrain the network to preserve
previously learned events.

These problems lead to an entirely new way of con-
structing and training neural networks, collected in
approaches, known as zero-shot and one-shot learn-
ing, continual learning and lifelong learning. We will
explore these new approaches in the separate self-
learning mini-Turtle project. In the current project we
will be using batch-oriented networks only, but we
will keep our options open to allow later integration
of these techniques.

1.3. Reinforcement and Q-Learning con-
cepts

Before going into details about the way that we intend
to build an Explicit Opponent Model, we will first
explain a number of important concepts, found in
most existing approaches, as to familiarize readers
with the most relevant terminology. We will frequently
find the following keywords in the literature:

1. Markov Decision Processes
2. The Bellman Equation
3. On-policy and Off-policy learning
4. Model-based and Model-free learning
5. Discrete actions and Continuous actions

But first we must make an important distinction
about the nature of our learning task. Most contempo-
rary learning systems are aimed at finding an optimal
strategy by exploring possible actions. Exploration is
an important aspect of these systems that allow them
to find better solutions by randomly searching the
possible action space. In our case we want to build
a model that is the best possible representation of
the opponent’s strategy, including its weak spots. So
we do not seek to improve on it; on the contrary, we
want to create a model that offers an explanation of
an opponent’s behavior.

That means that many of the elements of Reinforce-
ment Learning strategies are irrelevant in our case.
Especially exploration is an undesirable property that
we need to eliminate from the equation. So therefore
we explore the field of Reinforcement Learning with a
different attitude and want to keep all elements that
are helpful in learning from examples, found in our
logfiles, while ignoring all attempts to improve on
them.

2



Learning MSL Team Behavior 8.2 - Aug 2019

1.3.1 Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical
method to describe decision processes that are non-
deterministic. It is used in many disciplines and in AI
systems like speech recognition. It forms the basis for
many Reinforcement Learning implementations. In
an MDP the current situation is described in a State,
in our case the current game situation. An agent (or
player) has the option to choose from a collection of
Actions, which are based on a model, that is unknown
to us, like the strategy of a soccer team. In an MDP the
Actions are represented as a probability distribution.
Every Action results in a change of the State and a
value is assigned to taking an action, which is called
a Reward. So every action has a result, represented
in a new State and associated with that change is a
Value, indicating how desirable that Action is towards
achieving a certain goal. The process of a learning
system is to find out the probability distribution of all
actions and the calculation of the Values of all Actions.

1.3.2 The Bellman Equation

The Bellman equation is created to calculate the sum
total of contributions of all actions that lead to a certain
result. In many cases the result will only be known at
the end of a series of events, for instance when scoring
a goal. In order to find out what each step in a series
of events has contributed to scoring the goal, the value
of the end result needs to be distributed over all con-
tributing events, preferably based on the importance
of their impact. Most RL approaches make use of a
modified form of the Bellman equation to assign val-
ues to the steps in a sequence of events. Sometimes
this is partly done manually, in an ideal situation this
process is automated. Most approaches are variations
on this theme, sometimes with ingenious and complex
solutions to overcome difficulties. In many cases the
problem domain will have a large influence on the
kind of problems that one may encounter.

1.3.3 On-policy and Off-policy learning

There are many different approaches to learn how to
solve a problem. The most direct one is to learn the
best Action for each State, called a Policy. Some ap-
proaches take a different view and learn to recognize
and assign a value to State-Action pairs, which is the
case with Q-Learning. The value of a State-Action pair
is called it’s Q-Value. Because this approach does not
learn a Policy, it is called Off-Policy learning. In theory
Off-Policy learning should not work, since the goal is

to learn a Policy. However in practice it works very
well and leads to very successful systems.

1.3.4 Model-based and Model-free learning

In order to find out which Actions are possible and
allowed, two different approaches can be taken. In a
Model-based system a data structure is provided, that
represents all allowable actions. This can be done in
the form of a table, a decision tree or a Monte-Carlo
tree. Another way is to let the environment provide
this information or use a neural network to learn these
relationships. In such cases there is no model, but the
environment is used to ask questions. For instance in
Q-Learning, the system needs to explore the possible
actions, given a certain state. The model may provide
the probabilities of each action and the learning algo-
rithm may decide to explore an unknown variation.
It will then try this new action and may use a test
environment to find out what may happen. The result
is then added to the learned structure, which is slowly
expanded in this way.

1.3.5 The Learning Algorithm

A Neural Network usually learns by finding the differ-
ence between the network prediction and the known
output (the ground truth). This difference is called
the loss factor and this factor is used in a feedback
loop to update the weights in the hidden layers of the
network. Some networks use a forward loop, but the
principle remains the same. Different strategies have
been developed on how this error is used in updat-
ing the weights and the main approaches are based
on back propagation. The original algorithm for this
was Steepest Descent, later followed by the popular
Stochastic Gradient Descent or a more recent variation
Restarted Stochastic Gradient.

1.3.6 Discrete actions and Continuous actions

When an agent needs to learn how to treat a certain sit-
uation, the learning system is to learn situation-action
pairs. Each situation can lead to one or more actions,
which are called policies. A policy can be a simple
action like move forward, backward or stop. When
the robot needs to move in different directions, we
may need to increase the number of classes of such a
movement, for instance with left and right. But if finer
control is needed, the number of classes may grow to
an unmanageable size. It does not seem reasonable for
an agent to learn a separate action for every degree in

3



Learning MSL Team Behavior 8.2 - Aug 2019

direction that the robot might move. For such situa-
tions a continuous action space is more appropriate.
We would like to let the robot learn a parameterized
function like move(angle). Neural networks that are
able to learn to integrate a regression with a classifi-
cation are called parameterized action spaces. Such
functions could also have multiple parameters, like in
move (angle, speed).

1.4. Motivation and Design Goals

During the past few years, participants in the RoboCup
Middle Sized League (MSL) have attempted to develop
a shared simulation environment in which all teams
could play their software against that of other teams.
This requires all teams to encapsulate the strategy part
of their software in a standardized container and pub-
lish this information to be shared by other participants.
This project has met several problems, mostly related
to interfacing the different software approaches and
tools to a single standardized environment.

In an attempt to develop a self-learning capability
for our TURTLE robots, the idea grew to create a
model that would be able to learn the existing behav-
iors from the detailed log files that our robots collect
during all competitions. By studying the log files and
designing a model to represent strategic decisions, we
expect to learn a lot that would help in improving our
current MSL software.

We also got in touch with a group of the Leiden
Institute for Advanced Computer Studies (LIACS),
that is analyzing the behavior of soccer players. Our
detailed game logs form a rich source of data for their
studies and we are interested to see if our model and
their analysis methods would converge.

So as a prelude to a self-learning capability, we set
out to develop a system that learns the behavior of
all competing MSL teams and use this in our simula-
tion environment, instead of canned strategic software
from our competitors. We take our inspiration from
ideas like the DeepMind Atari games [68] and Alpha-
Zero approaches [89] and other approaches that might
help in achieving our goal.

During the development of this system we use a
simple simulation system in which we visualize the
contents of the log files and the responses of the model
to game situations. This environment is developed
with PyGame and allows replay of the captured log
files as well as letting two teams play, using the model
that captured the behaviors of the various teams.

Figure 1: Simulation environment to visualize the log file con-
tent and test the learned Neural Network against game
situations.

1.5. Backgrounds of our approach

Several attempts have been made in the past to build
models of RoboCup Soccer. The main problem is to
develop a representation for such a model, that is use-
ful to interpret the followed strategies as well as for a
later self-learning capability. While earlier approaches
have concentrated on recording know repertoires of
good policies, recent approaches seem to focus on
zero-knowledge systems that are capable of finding
out optimal policies by themselves. Although these ap-
proaches have reached impressive results, they suffer
from a big credibility problem; their actions cannot be
verified nor can they be explained and in some cases
not even be understood.

In our case an explicit model is only useful if it
helps explaining what an opponent does and has a
representation that allows inspection and analysis. In
Good-Old-Fashioned-AI (Gofai), systems were built
based on knowledge and on symbolic representations,
that were grounded in the real world. In order to be
understandable and to explain their behavior, such
systems need to be grounded on symbols and there-
fore we need to find a representation that facilitates
this requirement. Many modern approaches attempt
to let a system learn the distinguishing features of a
domain, like for instance in recognizing objects in im-
ages. When analyzing positional data from a group of
robots of two competing teams, the interpretation of
such data cannot be learned autonomously. In many
earlier approaches, hand-crafted features are used to
speed up the learning process.

We propose to use a similar approach, where we
rely mostly on hand-crafted features, but with this
restriction that we want to keep the possibility open for

4



Learning MSL Team Behavior 8.2 - Aug 2019

the system to discover additional features, if the hand-
crafted features are not sufficiently discriminative. But
where do we get such features from?

We started out with the already known features,
used in Futsal, which is a 5 against 5 soccer-playing
competition. We used the coaching manuals of FIFA
and UEFA [28, 99], as well as the one from the Dutch
National Futsal team, developed by Max Tjaden from
KNVB [97]. These contain a rich collection of game
situations, called set-pieces and documented in the
form of small action diagrams, that we intend to use
to classify game situations.

Figure 2: Visual Editor for Set-Pieces. Each Set-Piece has a num-
ber of steps that describe the strategy to be followed,
given a game situation

The second source is formed by the way that our
soccer-playing software is organized. In 2019 we im-
plemented the STP framework [12], based on earlier
work done by the CMUDragons SSL team. This ap-
proach consists of three parts; Skills, Tactics and Plays.
The game situation, encoded in team player positions,
ball position and possession is used to select a Tactic.
From this an appropriate Play is selected. A Play or
Set-Play (which is equivalent to the Futsal Set-Pieces)
is selected and based on the skills of the robots, a role
is assigned to each robot. The STP framework consists
of a declarative structure in which these Skills, Tactics
and Plays are defined and will serve as the grounding
symbols, or features in our approach.

That has an implicit risk, that other teams may oper-
ate with different interpretations of the game situation
and utilize features or grounding symbols that differ
from ours. This may result in interpretation differ-
ences. but as a first approach it should be a good

attempt, interpreting opponent actions in terms of our
own model of the game. When we encounter misfits,
we can always adapt our underlying STP model. The
main task of the learning system is then to interpret
the game situation and robot actions in terms of the
underlying Set-Pieces and STP model.

In order to do so, we will build a hierarchical struc-
ture, that will learn to interpret the game log entries
in three layers as follows:

1. Classification of the Game Situation
2. Identifying individual Agent Actions
3. Identifying actions of the Agent with the Ball

1.6. Classification of the Game Situation

This is the first part of the system that we will imple-
ment. Its main goal is to interpret each frame from
the logfile and determine the game situation. It will
be translated to a game situation per agent, for deeper
analysis in the next phases. It should result in informa-
tion that leads to the same conclusion as the selected
Tactic in the STP framework. We will first develop
this for our own team, since we have all data about
the actual decisions and actions that were taken by
our robots. This allows us to test if the analysis is
correct. If so, we can apply the same approach to the
opponents, for which we do not have this information
and thus learn the Game Situation and Tactics for our
opponent. This is only a first approximation. Because
most of our opponents are not using STP, but even if
they do, we have no access to their implementation of
the framework, we need to refine this later on. We will
describe this approach in section 3 and following.

The process of classifying the current game situation
is the task of generating a structure, similar to the
Set-Pieces that we retrieved from the Futsal Coaching
Manuals and then match these structures with the
corresponding STP structures. Because a Set-Piece
structure consists of a map with the positions of all
players and a number of steps, this process requires
a complex matching of time-steps. The STP version
of the Set-Pieces serves as a model. Once this model
is created, a matching STP model is searched for. If
this cannot be found, this is an indication that we
encountered a novel situation and the STP model for
the given team needs to be expanded with the learned
information. This way an entire STP model is learned
that can be inspected with the Visual Editor and serves
as an explanation of the team strategy.

A visual editor is developed that allows the defini-
tion of known Futsal set-pieces. So when a game situa-
tion is presented to the network it should respond with

5



Learning MSL Team Behavior 8.2 - Aug 2019

a reference to the most appropriate set-piece, showing
the Tactics that are known for this game situation. This
should provide the context for the neural network to
interpret the possible roles and actions of all agents in
the set-piece.

Figure 3: Set-Piece for Attack in 1-2-2 Formation.

An important part of classifying a game situation is
the position of individual players in the field. A good
way to identify the configuration of player positions is
the use of a Formation. In Soccer as well as in Futsal a
number of well-known formations are used, like the
most popular 1-2-2 Formation.

1.7. Identifying individual Agent Actions

When interpreting the movements of individual
agents, we need to find the begin and end of an
episode, which usually coincides with the transition
of ball-possession. To identify Agent Actions, we take
an entire episode and isolate the movements of each
agent of a team. First we begin with the starting po-
sitions of all agents in the field. Then we take the
sequence of actions of each agent and analyze these
movement patterns. We need to match them with
known movement patterns.

Agent actions are simple in principle. We divide the
playing field into a grid of 50x50 cm tiles. Each tile
can occupy a robot or the ball. Because the log files
are recorded at a frequency of about 10 Hz, each cycle
will at most record movement of a robot of a single
tile. So we can learn a classification of movement in 8
different directional classes per time step.

The problem however is to analyze what these move-
ments mean. We need to interpret a time-series of
movements and from it infer the intention of the agent.
This analysis is similar to Human Action Recognition,
which is a widely studied subject in Vision-Based sys-
tems. Therefore we have studied the methods that
have been developed in this research area and apply
these to our domain. Luckily our agent’s movements

are simple 2D movements in a series of Game Situa-
tion Images. We classify the movements based on a
set of pre-defined features, for which the Set-Pieces
and the STP formalism form the basis. So there is a
starting Game Situation Image (GSI) like we have seen
in the Coaching Manuals. Each path that an agent has
followed then becomes a step in the Set-Piece.

Figure 4: Game Sitution Image with traces for all agents and
the ball. The episode will be translated into an image
similar to figure 3 in which the traces are converted to
lines that show the movements of team members and
the ball.

The Game Situation Image will be transformed into
one in which the starting position of each agent is
depicted with a number, as in the Set-Pieces. The
steps in the episode are then inferred from the move-
ments and added to the generated Set-Piece. This
process transforms the entire episode into a complete
set-piece, which we then need to match with all known
Set-Pieces in the library. When the closest Set-Piece
is found, that one serves as an explanation of what
happens during the analyzed episode. If no matching
Set-Piece is found, we either need to add it to the li-
brary or need to modify the classification of this game
situation.

1.8. Identifying actions of the Agent with
the Ball

Interpreting actions of the Agent with the Ball is much
more complicated. First of all, here we are in most
cases not dealing with a series of actions, because a
single action with the ball, will result in a number
of ball movement events. So in this case we need to
infer from the Ball movements in successive time steps,
what the intention of the Agent was, at the moment
that the ball was kicked. The same applies to actions
like dribbling, passing or shooting at the goal. Here

6



Learning MSL Team Behavior 8.2 - Aug 2019

a combination of Agent movements, along with Ball
movements must be an indication of the Agent’s intent.
Other than in case of a simple Agent, here movements
cannot be discrete-sized, because they happen in the
continuous domain, so we need to learn regressions in
a continuous parameterized action space. A different
type of network is required for such operations.

7



Learning MSL Team Behavior 8.2 - Aug 2019

2. Related Work on Opponent Modeling

In this paper we describe many existing approaches
to learning in an attempt to find the ones, best
suited to our goal.

Opponent Modeling has been the subject of much
research, dating as far back as the nineties. These stud-
ies are mostly executed in the domain of Multi Agent
Systems (MAS) and are often also related to learning
agent strategies. Two domains have dominated this
research; the Pursuit environment and Robotic Soccer.
Soccer is a rich area to study multiple cooperating
and competing agents in a simplified world [94]. We
have seen many different approaches in this domain
with many formalisms. In our work we concentrate on
Robotic Soccer Games and have observed a number of
modeling approaches, described in the following sec-
tions. In the survey of MAS of Stone and Veloso (2000)
[94], a systematic overview is given of different types
of Multi Agent Systems. We concentrate on Hetero-
geneous Communicating and Non-Communicating
agents. Another overview describes the efforts on
Opponent Modeling in the RoboCup Coach Compe-
titions (Pourmehr2010 [76]), which were held from
2001 through 2006. This sub-league of the Simulation
League was specifically aimed at finding ways to ana-
lyze the opponent behavior and allow the coach soft-
ware to formulate strategic advice to the team. A more
recent summary of work on Opponent Modeling in
relation with more modern Deep Learning approaches
is given in the work of Hernandez-Leal2018 [42].

2.1. Policy Models

. Statistics

. Situation/Action pairs

. Policy/Value

. Monte Carlo Trees

Actions that agents take, given certain game situ-
ations are expressed in policies, recorded in Policy
Models. The first models were mostly based on statis-
tics, like the positions of the agents, distance to the
ball, distance to the opponent’s goal like the M* algo-
rithm (Carmel2000 - [13]). More detailed information
is recorded in Situation/Action pairs, where associa-
tions are detected between game situations and actions
that prove successful. In learning environments, this
resulted in systems that would learn to assign a value
to a certain policy, related to a game situation in Stef-
fens2004 - [92].

What is recorded in a model, mainly depends on the

domain and the situation. Because the number of pos-
sible situations is often intractable, many approaches
simplify the world, using hand-crafted features. This
generally is a lot of work and the performance of such
a system largely depends on the quality of the chosen
features. Therefore the real problem is to let a learning
system find relevant features automatically. In general,
discovery of features is speeded-up by simplifying the
environment, either by reducing the granularity of the
playing field or by restricting the classification space.

In later studies policies were recorded as Pol-
icy/Value pairs, where Reinforcement Learning (RL)
and later Q-Learning were used to learn the best
scoring policies. Selene1997, Ledezma2002 and
Iglesias2009 [88, 54, 45]. In other work, Monte
Carlo Trees are used to represent opponent actions
Hausknecht2015 [40].

2.2. Model Features

. Hand-Crafted Features

. Team Strategy Classification

. Action Patterns

. Commentary

Hand-crafted features are used to classify strategies,
agent’s roles or actions taken by agents. In general
learning team strategies works better than learning in-
dividual agent strategies. Different methods have been
proposed, but in most cases we see models that consist
of three layers, as described in the next subsection.
Different strategies are described in Pourmehr2010
[76], like Team Strategy Classification, Agent Action
Classification, Formation Analysis, Offense/Defense
Strategy and Pass Graphs. It ranges from recognizing
simple behaviors like Intercept, pass, dribble, where
the special Viena Pattern Editor was used, and a lan-
guage (CLang) to describe the action patterns that
are being used. (Iglesias2006 [46]). More compli-
cated are so-called Trie structures (Iglesias2009 [45]),
where sequences of actions are used to model agent be-
haviors (pass1to2->dribble2->pass2to10->goal10).
Case Based Reasoning is also used in some cases (Stef-
fens2004 [92]).

2.3. Three Level Layered Models

. Strategy/Formation

. Belief/Desire/Intention (BDI)

. Play/Role/Action

. Skills/Tactics/Plays (STP)

8



Learning MSL Team Behavior 8.2 - Aug 2019

Analyzing what a team does as a whole is recorded
in team strategy, where team formation is often used
to define cooperation patterns like 1-2-2 (the most pop-
ular Futsal formation) as used in Strategy/Formation
approach. (Pourmehr2010 [76]). In the lowest level the
individual agent actions are then placed within this
framework.

Another approach is to determine a team’s goals,
based on the beliefs of individual team members about
their intentions. Like the team wants to move to the op-
ponent half, the intention of player X is to pass the ball
to player Y. This is done in the Belief/Desire/Intention
(BDI) approach, described in (Haddadi1995 [?]). Tak-
ing inspiration from human soccer teams, game plays
are often used as examples in which each player as-
sumes a role that results in actions, executing that role,
as used in Play/Role/Action and Skills/Tactics/Plays
(STP) Browning2004 [12].

A ground-breaking development was Dynamite,
which was used to develop Reactive Deliberation
which was based on a number of hard-wired behaviors
(Sahota1994 [82]). It served as the basis and inspired
much of Stone’s work on robotic soccer. Minimax-Q
Learning for Markov games was used in a simulated
soccer game (Littman1994 [61]) and formed the ba-
sis for the later Soccer Simulation Server (Stone and
Veloso1996 [107]) . This server was also used in a com-
mentator system ROCCO (Andre1998 [5]) and MIKE
(Matsubara1999 [66]) and Byrne (Birnsted1999 [10]).

Gradually more work was done on decomposing
soccer tasks into different roles. A system with dy-
namically changing roles was developed by (Balch1998
[8]) later followed by a RL approach, where an entire
team learned effective behaviors instead of individual
behaviors. Hierarchical task decomposition became
the accepted way to let entire teams learn collective
behaviors (Uther and Veloso1997 [108]).

While these models are mostly used to analyze the
game situation, a similar approach is often used to
control a team of agents, like in the STP approach of
the CMDragons SSL team (Browning2004 [12]) or a
similar method used by the Cambada MSL team (Kon-
ing2012 [20]). These approaches can be viewed as both
an analysis and synthesis of the same problem. The
CMDragons system also used a more statistical ap-
proach in a Feature Based Opponent Strategy Model,
in which distance to the ball, distance to goal and dis-
tance between robots was used to determine the game
situation. (Trevizan2010 - [98]). It is an interesting
observation that many of these approaches are using
three-level structures to describe the tactics of teams,

although they use different ideas and formalisms to
achieve the same goal.

A statistical approach is taken by the Leiden In-
stitute of Advanced Computer Studies (LIACS Meer-
hoff2019 [67])

Opponent Modeling is mostly used as part of a
learning system. Almost all systems use an implicit
opponent model to improve the learning skills of a
team of agents, using the model to predict the possible
counter-actions of the opponent.

2.4. Action Recognition

All these approaches use instances of a form of Ac-
tion Recognition, which has been the subject of study
for the past 10 years and has seen many new ideas.
In the comprehensive review of recent developments
of Zhang2019 [121] most of the recent ideas are de-
scribed. Another good overview of recent develop-
ments is given in (Ghosh2018 [34]), where the most
influential contributions are listed. However most of
these recent developments concentrate on Human Ac-
tion Recognition, in which Depth analysis and Skele-
ton analysis play a growing role. In our case a much
simpler approach is required, in which only the trajec-
tories of agents and the ball play a role.

A study in which people movements in a home
setting were registered with simple on/off switches
on doors and cupboards (Kasteren2008 [102]) is much
more representative of our type of problem.

In this study both a Hidden Markov Model (HMM
[26, 33]) and Conditional Random Fields (CRF) [25,
112] are used and perform equally well. The main
difference is that CRFs are more flexible and allow
more complex dependencies to be modeled. It can
be assumed that in many cases, the behavior of an
agent not only depends on the previous state, but also
on that of surrounding agents and the position of the
ball. So we may encounter situations that require the
implementation of a CRF as part of a Reinforcement
Learning environment, or similar approaches.

2.5. The Intentional Stance

Because we are looking for ways to offer explanations
of the learned behavior, it is important that the ele-
ments of the model are symbols that are grounded in
the robotic soccer-playing world. Important work on
Symbol Grounding has been done by Steels2005 [91]
and Harnad1993 [38].

Attributing beliefs and intentions to agents like
robots is taking the Intentional Stance, which allows

9



Learning MSL Team Behavior 8.2 - Aug 2019

us to understand and explain the behavior of such
systems as developed by Dennet1971 [23]. Building
a model that includes a robot’s beliefs and intentions
creates a semiotic network [91], that forms the basis
for communication between the robot and the user,
grounded in the soccer-world, and provides the basis
for explanatory capabilities of a system.

Therefore we need to classify sequences of actions
into known behaviors like Mark, Block-Passage,
Pass-Ball and determine for every agent the inten-
tions that agent has. In the soccer-playing domain
intentions have been investigate in the work of Rabi-
nowitz2018 [?] and the BDI approach Haddadi 1995
[?].

We will be using beliefs and intentions as described
in the STP implementation of our software [12, 20] and
also in the Set-Pieces of the Futsal Coaching Manuals
of FIFA, UEFA and KNVB [28, 99, 97].

2.6. Reinforcement Learning

In the informative survey of Hernandez-Leal2018 -
[42] most of the recent RL approaches are described,
in which we see a gradual development from simple
Reinforcement Learning (RL) to many different
approaches of Q-Learning:

RL Methods
ID Descr
DQN Deep Q-Learning Networks
BDQN Bootstrapped DQN
DRQN Deep Recurrent Q-Learning Networks
DRON Deep Reinforcement Opponent Networks
A3C Actor-Critic systems A2C/A3C

Continuous
DDPG Deep Deterministic Policy Gradients
NAF Normalized Advantage Functions
PGN Policy Gradient Networks
PPO Proximal Policy Optimization

Table 1: Various Reinforcement Learning Methods.

Over the past years we have seen a gradual shift in
learning, starting with Reinforcement Learning (RL),
growing into Q-Learning and Deep Q-Learning Net-
works (DQN) Mnih2013 [68]. In a DQN a separate
network estimates the Q-Values, that are used to learn
the Policy Values of the Target network. In such a net-
work the Policy consists of Actions, that are selected
based on the best long-term reward for a series of ac-
tions. This approach was also taken in a small Soccer
simulation program with implicit Opponent Model-

ing, playing hand-crafted strategies with 2 players on
a 6x9 grid to find out if the system could learn a bet-
ter strategy by itself (He2016 - [41]). An extension to
this approach is bootstrapped DQN [74], which learns
faster, because it uses deep exploration and achieves
better results. In another study, a simple 2-player simu-
lation was created to learn to recognize action patterns
(Martinovic2010 - [65]). This system used three occu-
pancy matrices to represent the Ball, Own team and
Opponent. There were two representations of the play-
ing field; a Strategy Level Model (coarse) and and
Abstract Level (fine). The compressed representation
of the field allowed patterns to be more similar, while
Pattern Matching was based on a statistical approach.

Where the earlier approaches used stacked in-
put frames to represent successive actions, later ap-
proaches included a Recurrent Neural Network (RNN)
Liang2015 [56] in the form of a Long Short Term
Memory cell (LSTM) [49, 73] that can learn to rep-
resent longer sequences or sometimes even multiple
sequences with different time scales. This type of net-
work uses an Experience Replay (ER) [85] buffer, from
which the learning system randomly takes sequences
of fixed length, to gradually learn the best policies.

This approach has been extended into Deep De-
terministic Policy Gradients (DDPG) Lillicran2016 -
[60], where the discrete actions are replaced by a
Policy Gradient. Gradients allow the network to
learn gradual functions like kicking in a certain di-
rection or with a given force. This work was further
extended in a system that learned fully parameter-
ized action spaces that are similar to program func-
tions Dash(power, direction), Turn(direction),
Kick(power, direction) (Hausknecht2016 - [39]). In
this work hand-crafted intermediate rewards are used
to overcome the problem of sparse rewards. Also
bounds checking for the parameterized spaces is done
by inverting the gradients when they extend beyond
the acceptable values. In a successive study of this
approach, a hybrid between DQN and DDPG was cre-
ated, which directly learns actions in one network and
parameters in a second network (Xiong2018 - [117]).
More work was also done on networks that learn Con-
tinuous Action Spaces, like Normalized Advantage
Functions (NAF [35]), which is a much simpler ap-
proach than DDPG. A similar approach is taken in the
work on Proximal Policy Optimization (PPO) [87].

More recent approaches use separate networks as
critics to improve the accuracy of the learned values
in Actor Critic Systems (A3C) [50, 69]).

Different methods are used to store these models,

10



Learning MSL Team Behavior 8.2 - Aug 2019

where Monte-Carlo Trees and other tree structures are
most popular. A more explicit model of opponent
behaviors was used in a system that used Opponent-
driven planning, in which opponents were coerced
into actions that would allow easier attack by the
playing team. Strategies in this system were called
Pass-Ahead and Coerce-and-Attack and is known
as Threat-based defense (Biswas2014 - [11]).

Several new approaches have been developed like
Agents Modeling Agents (AMA Albrecht2018 [4]).
Learning with Opponent Awareness (LOLA Foer-
ster2018 [29]) and Theory Of Mind Networks (ToMnet
Rabinowitz2018 [?]) where the intentions of the op-
ponent are being analyzed. As these networks grow
larger, parts of the network are being shared by differ-
ent versions, using so-called Parameter Sharing (Sune-
hag2018 [95]).

More recent developments use the Opponent Mod-
els to explore the possibilities with Self-play, like in
Alpha-Go (Silver2016 [?]), Alpha-Zero (Silver2017 [?])
and Alpha-Star (Arulkumaran2019 [6]). Another ap-
proach is the use of a specialized Deep Reinforcement
Opponent Network (DRON) He2016 [41].

2.7. Recurrent Networks

Most of the approaches to learn to recognize action
sequences are based on Recurrent Neural Networks
(RNN), using one or more Long Short Term Memory
(LSTM) layers ()Karpathy2015 and Olah2015 [49, 73]).
Recent developments in this area have shown that
when the number of steps between the beginning
and end of a series is large, the memory and pro-
cessing requirements become large. Also when there
are dependencies that are not directly related to ear-
lier steps in the sequence, these systems are unable to
learn these relationships. Conditional Random Fields
(Echen2012 and Wallach2004 [25, 112]) are one way to
solve this problem, but recent developments offer a
better alternative in the form of Attention Mechanisms
(Culurciello2018 [19]).

We see an increased use of combinations of Rein-
forcement Learning, supplemented with Recurrent
Networks, based on the Attention Mechanism [31],
but Attention Mechanisms offer many more advan-
tages. First of all they allow richer representations
of the dependencies between elements of a series of
events. In Hierarchical Attention Networks (Yang2008
[119]) several layers like in our case the Game Situa-
tion and Agent Actions can be represented by nested
networks. And although most of these networks are
used in Natural Language Processing (NLP) tasks, pro-

cessing of time-series is a good topic to be handled by
this technology (Vinayavekhin1806 [110]).

One of the biggest problems with Neural Networks,
however is that it is hard to understand what they
are doing. Finding ways to explain their behavior
is very important and Attention Mechanisms offer a
good way to tackle this problem (Liao2018 [57]). An
important aspect of being able to explain why a system
is selecting a certain action is to work with symbolic
information. Actions and Objects need to be grounded
in the real world. This is referred to as the Grounding
Problem [91]. In the early days of AI (GOFAI) [55]
most processing was symbolic, based on reasoning
with heuristics, that were derived from human experts
[21, 103].

Being able to combine the sub-symbolic nature of
Neural Networks and grounded symbolic information
in a single system will allow for better facilities to
provide explanation facilities, like were available in
Expert Systems [103]. Several proposals have been
made to allow this approach [83, 38]. In our case
these facilities could be used together with the Set-
Pieces as part of a Hierarchical Attention Network,
combined with GRUs to form an explainable model of
the behavior of opponents.

2.8. Previous Work

Earlier work on predicting opponent behavior was
done by one of our team members, van ’t Klooster
(2018) [105]. In this work, traces of game situations
were created in occupancy grids, representing the
movements of opponents in various game situations.
A Convolutional Neural Network was used to learn
to recognize these traces and predict the action of an
opponent. (See Figure 5)

Figure 5: Example of a trace of two game situations: a) a Pass, b)
a Shot at Goal. Represented in 15 and 12 time steps

11



Learning MSL Team Behavior 8.2 - Aug 2019

Learning to play soccer is the subject of many earlier
studies, that inspired our work. The German Brain-
stormers Tribot Team [37] was one of the first to try
such an approach. [80, 81]. In the RoboCup Simulation
league several approaches have been tried [93]. Several
teams from other leagues also have made attempts at
this. [86, 18, 14, 120, 52, 37]

2.9. Contribution of this Work

Here we will list our contribution. The list underneath
is a first attempt.

1. Explicit Opponent Modeling as an analysis
method

2. Team Formation Analysis
3. Agent Action Prediction and Intention analysis
4. Team play selection and classification
5. Using STP as an analysis and synthesis model
6. Using Set-Pieces as a visual model to explain

strategies

12



Learning MSL Team Behavior 8.2 - Aug 2019

3. Our Opponent Modeling Approach

Our goal is to create an explicit Opponent Model
that can be used to drive a simulator and al-
lows comparing the various team strategies.

Analyzing a game is done on three different levels:

1. Team Level - Classifying Game Situations
2. Tactical Level - Identifying Formations and Set-

Pieces
3. Agent Level - Recognizing Action Patterns, Roles

and Intentions

3.1. Classifying Game Situations

Here we attempt to define the current game status. It
is generally done by defining features like Attack and
Defend and information about the location where the
game is concentrated like OurHalf and OpponentHalf.
In some cases more detailed information is required
by dividing the field into a number of sections.

3.2. Identifying Formations and Set-Pieces

Based on the Game Situation there may be more de-
tailed qualifications about the way the game situation
is handled. Set-Pieces are standard patterns that are
used in pre-defined situations and Opponent Model-
ing approaches attempt to identify which of a number
of given Set-Pieces is being used. Recognizing a forma-
tion is used to identify which roles have been assigned
to the players based on their relative positions.

Each team will have its own Model, consisting of a
collection of Set-Pieces. These will be shared with a
generic model, so we can find out which strategies are
shared by different teams. During analysis, first a tem-
plate Set-Piece is generated and then matched against
the database. If the strategy is found, it is added as
a reference. If not, the new strategy is added to the
database. Also we will keep a collection of verified
Set-Pieces as a central reference, that we can use as a
basis for comparisons of all encountered strategies.

3.3. Recognizing Action Patterns and Roles

On the level of individual players, the Opponent
Model tries to recognize a certain pattern, expressed as
a role like Attacker, Defender, Assist. In other cases se-
quences of actions are strung together as patterns like
Dribble, Pass, Receive, Shoot. In order to determine an
agent’s intentions, we take the entire episode and trace
the movements of an agent. From these movements
we intend to learn what these movements mean, just

as was done in the study of people movements in a
house (Kasteren [102]) in which a Conditional Ran-
dom Fields approach was taken. We will investigate
if we can combine this approach with a Hierarchical
Attention Network (HAN).

3.4. The contents of our logfiles

The logfiles that our TURTLE robots create during
competitions, contain details about the position of the
robots of both teams and the ball in time-steps of about
10 milliseconds. In addition this file contains informa-
tion about the game situation, like ball possession
and the starting condition of fragments, like kick-off,
throw-in etc. We divide these traces into groups that
start and end with a referee command, communicated
to the robots using a so-called RefBox computer. Each
of these game moments is split into episodes, span-
ning the period between switching of ball-possession,
called Game Turnover Points (GTP). Episodes can last
from 1 time-step to hundreds, spanning periods of 1
to 10 seconds or more. More details can be found in
Section 4, also see Figures 10 and 11

The input to the Neural Network, that we will be
building is formed by Game Situation Images (GSI),
generated from the TURTLE log files. This image con-
tains information about the positions of all robots in
the field and the position of the ball in 40x28 pixel RGB
images, where R represents our team, B the opponent
team and G the ball.

In addition to this, a visual representation will be
made of the starting situation, similar to the images,
used in the Set-Pieces (see Figure 3)

The episodes in the log files can be divided into
three different types:

1. RefBox Situations - Start- and endpoint of an
episode

2. Game Start Situations - Start after a RefBox Start
event

3. Game Turnover Points - Transfer of ball possession

Initially we will only use the last type of events,
the Game Turnover Points. The reason for this is
that for Refbox Situations all teams use standard Set-
Pieces, that we will learn at a later stage, because
they only involve preparing for a game-start situation
like moving to their positions for a kick-off. These
have no bearing on the strategy of the team during
a competition. The actual Game Start Situation is
generally controlled by Set-Pieces as well and describe
how to handle a Kick-Off or a Throw-In. We will

13



Learning MSL Team Behavior 8.2 - Aug 2019

concentrate on these at a later stage, since they have
only a minor influence on the overall strategy.

So the situations that we will concentrate on are
those directly following the first Game Turnover Point
after a RefBox situation. This is where a team first
loses or gains possession of the ball. At every Game
Turnover Point a new episode starts and is treated as
the start of a Set-Piece. A game situation may have
several alternative set-pieces and the network needs
to learn the probability distribution of choosing one
of these alternatives. The traced patterns of agent
movements are then represented as a step in the Set-
Piece.

3.5. Treating Soccer as a Classical Game

Most recent approaches to learn to play games, like
the Atari Games, AlphaGo and Alpha-zero ([?, ?, 89])
are based on so-called Classical Games. In a Classi-
cal Game two players take turns in moving pieces on
a board. So if we want to use the same technology
that has been so successful in recent years, we need to
answer the question if Soccer can somehow be inter-
preted as a Classical Game. To answer this question
we introduce a number of simplifications.

First we convert the playing field from a continuous
space into an occupancy grid of 50x50 cm cells, making
it similar to a playing board. Each cell can only contain
a single robot or the ball. Although in reality the
ball could partly overlap with the robot, we allow
the ball to fully overlap with a robot or to directly
connect to its grid cell. A robot possesses the ball if it
overlaps or connects with it. Secondly we replace the
continuous actions of robots into time slots of 10 ms
and allow each team to move their robots a single cell
during each cycle, thereby responding to movements
from the opposing team. This results in a turn-based
system where each team may move their robots once
every step. The ball may be moved over more cells,
representing the higher velocity of the ball, but only
by the player that possesses the ball.

3.6. Turn Based Soccer

Although there is no scientific literature about turn-
based soccer we found three computer games in which
Turn Based Soccer has been implemented [79, 51]. An-
other one (GridSoccer) is using Reinforcement Learn-
ing to play a game on a 20x30 cell grid [47]. This begs
the question: "Is Turn Based Soccer similar enough to
Continuous Soccer to serve as a basis to describe a real
soccer match?"

More importantly however is that we want to use
this approach to control game strategy. This is cur-
rently done based on assigning roles to the robots that,
once assigned are executed for as long as possible until
the game situation deviates too much from the situa-
tion that led to the current role assignment. In such
a case new roles are assigned. In a turn-based sys-
tem every new step will re-assess the current situation
and suggest player moves to adapt to the new situ-
ation. Therefore the network needs to receive traces
of a game that allows it to learn to anticipate desir-
able or undesirable situations and associate these with
actions that the team usually makes under these cir-
cumstances. By using a recurrent network we expect
such a network to learn to associate time-separated
game situations so that some kind of look-ahead be-
havior will occur. We need to find out what the best
trace length is for this to happen and will test trace
lengths between 4 and 10 steps, spanning a time pe-
riod of about 1 second.

In earlier work on Opponent Action Predicting
(Klooster2018 [105]) the game state was represented
as an occupancy grid with stacked input frames, that
were analyzed by a Convolutional Neural Network
(CNN). In our approach we need to find an agent’s
intentions, for which we will be using Conditional
Random Fields, possibly combined with a Recurrent
Neural Network or a Hierarchical Attention Network.

Figure 6: A Game Situation Image shows all robots of our team
in Red, opponents in Blue and the ball in Green.

3.7. Objectives of the Neural Networks

We will be creating a set of Neural Networks that takes
an episode as input, consisting of all steps that lead to
a Game Turnover Point and that outputs three pieces
of information, relevant to a simulation program:

1. Agent Actions
2. Ball Actions
3. Game Situation Classification

Figure 7 shows the relationships between these in-
puts and outputs. The input consists of a GSI and

14



Learning MSL Team Behavior 8.2 - Aug 2019

Aspects of Game Log files
Aspect Loss% Error% Remark
Agent Action 0.0 0.0
Ball Action 0.0 0.0
Team Advantage 0.0 0.0
Partial Observability 0.0 0.0
World Model 0.0 0.0
4 Steps 0.0 0.0
10 Steps 0.0 0.0
N Steps 0.0 0.0

Table 2: Overview of the different aspects that we will investigate.

the network predicts the Tactics that will be selected
as well as the actions, taken by the players of the
team. Actions are split between the active player, that
possesses the ball and the other players that assist
or defend. In terms of STP, the network will classify
the Set-Piece, identify the best Tactics and predict the
actions for each player.

Episode

Steps

StreamA
RNN1

StreamV
RNN2

StreamP
RNN3

Advantage

Game State

Value
Agent Action

PValue
Ball Action

Game Situation
Classification

Action
X[-,0,+] Y[-,0,+]

Ball Action
X[-,0,+] Y[-,0,+]

Ball Plan
Dribble,

Pass, Shoot

Figure 7: Learning Goals of the Neural Network

The model learns the actions for all agents, so when
playing a simulation, every agent consults the network
to find out the strategy when playing in that position,
given the current state of the world model.

We will include an additional network that concen-
trates on learning the Advantage of the current Game
State, given the learned team strategy in order to find
weak and strong points of the team strategy. Dur-
ing a simulation this could warn for dangerous or
advantageous situations. Table 2 lists the possibilities
and the results that will be gathered during the re-
search. When we have collected the information, we
will rewrite this section to represent the results.

3.8. Our Neural Network Approach

As explained in the previous sections, there is a large
body of research, related to learning. In our case we
are looking for the best method to build an Opponent
Model for each MSL team and associate these with a

reference model in order to make comparisons. Be-
cause each year teams improve their strategies, we
need to make a new model for each team for every
year.

Most learning systems are based on some form of a
Reinforcement Learning approach, where Recurrent
Networks are employed to learn time sequences. Be-
cause we also want to be able to offer explanations, or
current thinking is to use a Hierarchical Attention Net-
work (HAN Figure 8), combined with Gated Recurrent
Units (GRU) and probably a Convolutional Neural
Network (CNN). This type of network may possibly
be combined with a reinforcement learning network
like Double Dueling Q-Learning Recurrent Network
(DDRQN) and for continuous action spaces with a
Normalized Advantage Function Network (NAF).

Figure 8: Hierarchical Attention Network Model (HAN).

15



Learning MSL Team Behavior 8.2 - Aug 2019

Phases of the project
Nr Descr Status% Result Remark
1 Converting Logfiles 100
2 Classifying Game State 0
3 Generate Set-Pieces 0
4 Learning Agent Actions 5
5 Learning Ball Actions 0
6 Combining Models 0
7 Learn Advantage/Threat 0
8 Running in Simulation 10
9 Testing with Set-Pieces 5
10 Packaging in module 0
11 Testing in Greenfield 0
12 Publication 5

Table 3: Phases of the project.

3.9. Project Planning and Status

In table 3 we list the project phases and will include
updates for the status of the project. The first step
will be the classification of Game States, for which all
preparations are now made and training of the first
network can begin.

We explain our approach in the following sections:

4. Analyzing The MSL Game Log files

Determining Game Turnover Points

Classifying Game Situations

Treating Soccer as a Classical Game
5. Training the Neural Network
6. Using the network in a Simulator
7. Conclusions and further work

16



Learning MSL Team Behavior 8.2 - Aug 2019

4. Analyzing the MSL Game Log files

The Tech United TURTLE robots keep logfiles of
all played competitions in digitized form. We
use these logfiles to determine the game situa-

tion for every step of a match and divide these game
situations into three different categories:

1. RefBox Situations
2. Game Restart Situations
3. Game Turnover Points

4.1. RefBox Situations

During MSL Robot Soccer competitions, a human ref-
eree judges the behavior of the participating robots
and calls for a stop when a violation of the rules is
detected or a goal is scored. A single computer is ded-
icated to communicate these decisions to the robots in
a so-called RefBox command. These commands are
situations like a kick-off, a throw-in or a corner.

When a RefBox situation occurs, the game is stopped
and the event is captured in the logfile. The robots then
prepare for the given situation and take their positions.
For instance when a throw-in is called, the referee first
places the ball and then the robots regroup to resume
play given the throw-in situation. The robot closest
to the ball positions itself behind the ball, a second
robot gets in a position to receive the ball. The team
of the opponent takes positions at a distance from the
ball as described in the rules. The logfiles describe
the movements of all players to reach their starting
positions. These, however are not the robot actions
that determine game situations and are therefore not
used to learn team behaviors.

4.2. Game Restart Situations

When both teams are positioned, the referee calls for
a Start to resume the game (See Figure 10). The team
that is in possession of the ball tries to keep the ball
and move to the opponent’s goal in order to score a
goal. The defending team tries to block these attacks
and tries to gain possession of the ball. As soon as the
attacking team loses the ball, or shoots at the goal, the
game situation changes (see Figure 9 and 11). These
situations are called Game Turnover Points (GTP).

4.3. Game Turnover Points

While the two situations, described before; the RefBox
and Restart situations, are mostly based on so-called
set-pieces, game Turnover Points (GTP) are the most

important game situations that determine how well
a team plays the game. Learning team behavior is
therefore mostly concentrated on these GTPs and we
want to learn which actions a team performs to get and
maintain possession of the ball. In addition we want to
learn how a team avoids losing the ball or prevents the
opponents from seizing the ball. Additional situations
are dribbling, passes, receives and shots at the goal.

During a match, the main aim is to move the ball
into the opponent’s goal and there are a number of
steps, that can be identified to classify how well this
aim is being achieved. In Figure 14 we show the
various state transitions that may occur between GTPs.

No Ball OurBall

OurBall
Free

OppBall

OppBall
Free

Figure 9: Ball Possession State Transition Diagram. NoBall
means that ball is not seen. BallFree means that the ball
is in between players

4.4. Input for the Neural Network

The TURTLE logfiles are loaded into two selection
grids, in which the game situations are listed. A man-
ual selection can be made to inspect the contents of a
file.

The basic data structure is a collection of steps,
where each step is identified by a step number, fol-
lowed by information about the RefBox situation and
information about ball possession. It also contains
location information for the ball and the players of
both teams.

4.5. Multi Agent behavior

The network learns the behavior of each role by taking
the positions of all players of a team and trace the
actions of all of them. This is done, because all field
robots have the same skills. The keeper robot has
some special skills and is not included in this learning
process. In our current system, all robots operate on
a shared world model, which is built by combining
the position information from all robots. We can train
the network from this world model represented in a
Game Situation Image (See Figure 12 and 12).

17



Learning MSL Team Behavior 8.2 - Aug 2019

Figure 10: List of RefBox situations from a log file

Figure 11: List of Game Turnover Point episodes, selected from a
RefBox situation, consisting of time-steps

Although we have detailed information about the
position of all robots as well as their orientation and
acceleration data, we convert this information to a grid
as input to the Neural Networks. By doing so, we lose
some information and therefore the question is if there
is not a more natural way to represent trajectories.
There exist a class of Neural Networks, called Graph
Neural Networks, that represent different kinds of
graphs (Wu2019 [116]). In these networks however the
graph representations are also first converted to a grid-
like representation. So currently there is no Neural
Network type that can handle trajectories other than
in grid-like representations. Recognizing trajectories
and action patterns are more a vision problem than a
sequence classification problem (Singh2016 [90]).

Figure 12: Our development environment visualizes traces of an
episode in deminishing colors to give an overview of
what happens during an episode

Figure 13: The positions of all robots are shown in a grid for each
time stpe of an episode. Red is our team. Blue is the
opponent team and Green is the ball.

4.6. Learning vs Capturing

In the next sections we describe the approach we take
to build a learning system. The most important deci-
sion is the reward system, that tells the network how
good it is currently performing. In a self-learning sys-
tem we would, for instance give a reward if a team
seizes or keeps the ball and give a negative reward
when it loses the ball. When we want to represent
the behavior of a team, without improving on it, the
reward should be given when the network correctly
predicts the next action and a punishment if the pre-
dicted action is wrong.

So we need to concentrate on establishing when an
action is correctly predicted, where it becomes impor-
tant to also distinguish between grades of correctness.
Given the fact that our logging data is captured at
a frequency of 10Hz, there can be small fluctuations
between successive frames, because they will be quan-
tized. Given the maximum speed of the robots, each
frame would normally show a movement of at most a
single cell. Because the system representation does not
allow movements of a fraction of a cell, there could
be differences between predictions of a single cell. So
partial movements could be correct and still not match
the output of the system. Therefore moving in the
wrong direction should be punished, while moving in
the right direction should be awarded, but a failure
to move should not count as an error. So we need

18



Learning MSL Team Behavior 8.2 - Aug 2019

to consider to average out movements over multiple
frames in order to determine the correct movement
predictions.

What we actually want to achieve is that the net-
work is able to recognize action patterns and classify
these as the equivalent Roles as defined in STP. Be-
cause all Roles are included in the log-files these serve
as ground truth. However, our interpretation of In-
tentions and Roles may differ from these of our oppo-
nents. So we will include a second way of establish-
ing ground-truth, which is done using the inspection
boxes of the logfile (See Figure 11). Here we can select
a particular agent, inspect it’s trajectory and offer a
classification and role, allowing the network to learn
to recognize similar situations.

4.7. Validity of our approach

Converting a continuous movement to a single action
and then back again to a continuous motion requires
careful consideration because it involves a loss of in-
formation. We expect the simulator to correct for
this by integrating the movements into a velocity that
increases by the time it continues in the same direc-
tion. We carefully need to determine if this is the case.
Therefore we perform a number of calculations to find
out how large the differences are.

For agent actions this problem is less severe, because
every next frame will form a successive refinement
of the direction. But for the Ball movements this is
more difficult. In case of a pass to another robot,
the movements are divided into 8 angles, spanning
a circular areas of 45 degrees. The farther away the
target is from the robot, passing the ball, the larger
the deviation will be. At the moment of shooting, the
robot needs to accurately determine both the angle
and distance that has to be covered. This cannot be
calculated from the information in two successive time
frames. So the network needs to learn the angle and
distance by observing, preferably the entire time of
the pass.

An better approach would be to find out where the
pass is targeted to. We can do this by taking the end
position of the ball in the episode and find the agent
that is closest to that position. Successive steps cannot
correct the ball direction, because this is determined at
the moment of shooting. So guessing who the receiver
of the pass or shooting will be the best approach.

4.8. Further Analysis

Using the logfiles not only allows capturing the behav-
ior of opponent teams, it also allows analysis of weak
spots in the strategy of both teams. Any time when the
ball is lost or when an shot on goal is attempted, the
team that suffered from a weak move has a disadvan-
tage. By assigning a negative reward to these episodes,
the network learns to recognize undesirable situations
and can identify such moments in the strategy. Us-
ing the network, configurations can be found, where
this weakness leads to an advantage for the opponent.
This allows concentration of fixing these weak spots
or taking advantage for the opponent’s weak spots.

Therefore our research is aimed at the following
points:

1. Learning to predict the actions of all participating
teams in a package, suitable for inclusion in a
simulator. It takes a simplified world model as
input and outputs actions for each agent of a team
for all game situations.

2. Have a second network, working from the same
input that signals the strength of the current situa-
tion, taking advantage of learning the weak points
and strong points of both teams. The network can
signal if we enter such a situation.

Considerations for design and development:

1. Deep Recurrent Q-Learning Networks (DRQN)
networks are mostly used to learn a policy, given
a certain state. In our case we want to accurately
capture a team’s behavior, not improve on it.

2. Is a DRQN or DDRQN the best architecture for
this? Calculating the Q value should concentrate
in this case on how well the model predicts the
behavior. The best way to test this is to train the
model on the first half of the competition and
verify it with the second half of the competition,
which the model has not seen before.

3. Do we also take setup and buildup situations into
account like preparing for a kickoff and perform-
ing an active and passive kickoff. For now we
only concentrate on a running game, which starts
after the kickoff has occurred.

4. Do we train on the world model or on per-agent
partial observable images, like the agents do in a
real game. Or maybe a combination of a partial
image, enhanced with info about the ball and goal
positions and location on the field.

5. Study the use of Parameterized Action Spaces
to allow learning of functions with parameters

19



Learning MSL Team Behavior 8.2 - Aug 2019

like kicking with a certain force and direction.
This can be realized by some of the newer
DRQN networks with continuous control func-
tions. (Hausknecht2016 [39, 60]).

6. Investigate CRF and HAN to learn the intention
of every agent and infer a role from the Set-Piece.

7. Generate a complete Set-Piece and find a match
in the database to classify the strategy.

20



Learning MSL Team Behavior 8.2 - Aug 2019

5. Game Situation Classification

Game Situation Classification is a matter of rec-
ognizing a number of important game states,
like Ball Possession, the area on the field where

the play is taking place and the Formation that both
teams have selected. Game State Transitions are de-
picted in Figure 14. The network must learn to predict
both the Game Status as well as the Roles of all players
in each time step. The game state is expressed in a
number of situations as shown in Tables 4 and 6.

However there is an important inter-dependency
between the observed game situation and the actions
of agents. The Formation cannot be deduced directly
from the initial positions of all agents, but must be in-
ferred from their roles. These roles in turn can only be
inferred from the actions each agent is taking during
an episode. So the initial stated is given by features
like Ball-Possession and the playing half and position
on the field, while the Formation is inferred later and
then added to the initial game situation. When roles
are changed during an episode, a new formation may
have been selected and we need to be able to detect
this. Role changes are recorded in the logfile for our
own team, so we use this information as ground-truth
to learn to recognize actions and classify them as Roles.
This learned classification is then used on the oppo-
nent’s team in order to make the same analysis on the
Opponent’s behavior.

Lost Ball Got Ball

Dribble

Pass Receive

Shoot Goal

Figure 14: Game State Transition Diagram. Lost Ball means that
ball is lost to the opponent

The main purpose of the Game Situation Classifica-
tion is to evaluate the current position of each team, in
order to determine where important decision points
occur. At any moment the ball may be lost and the
state then returns to Lost Ball. This is not shown in
the diagram to simplify the layout. This part of the
network must learn, what the critical decision points
are during an episode, that may lead to ball loss or

ball possession. It is also needed to give rewards or
punishments to actions that an agent takes to learn the
behavior of a team of cooperating agents.

When training a neural network to classify images,
the main component is the detection of features, that
discriminate one object from another. In our case we
have a time-series of successive images, leading to a
certain event. The network needs to learn, where in
this sequence a situation occurs that is crucial to the
outcome of the episode. This is generally best done
with a Recurrent Neural Network.

In other domains, where similar approaches are
used, like Natural Language Processing (NLP), nor-
mally a set of words or items is defined and the net-
work learns to predict the probability of the next word
occurring. As the number of words in spoken or writ-
ten text can be enormous, special techniques have
been developed to manage such a library of words or
tokens, using so-called embeddings.

The game situations that occur in our case, are
mostly defined by the configuration of positions of
players on the field. The number of different combi-
nations may be overwhelming. We can drastically cut
the number of possibilities, by preprocessing the game
state into a number of properties, that we know are rel-
evant to the game. These of course, are the same kind
of properties we are looking for when programming
our robots to play soccer. Table 4 lists examples of
these properties in approximate order of importance.

Game States
Aspect Reward Occur% Prop
Ball possession 1.0 0.0 0.0
Offence, Defence 0.8 0.0 0.0
Our Half, Opp half 0.6 0.0 0.0
Ball dist to goal 0.6 0.0 0.0
Free path to goal 0.4 0.0 0.0
Dist to peer 0.2 0.0 0.0
Free path to peer 0.2 0.0 0.0
Num of players -1.0 0.0 0.0

Table 4: Different Game States with manually assigned features

These aspects are constantly calculated during a
game and are recorded in our log files, but we do not
have such information about our opponent’s players.
The game situation is evaluated in a world model
and in individual models for each agent. So as a first
attempt we will let the network learn to classify each
game situation according to the properties that we
have selected.

We start with these hand-crafted properties but later
on we might let the network attempt to find these

21



Learning MSL Team Behavior 8.2 - Aug 2019

features by the learning process, if we find that a
more refined scheme is required. In Table 6 we give a
more detailed classification, based on the Futsal Set-
Pieces, in which the STP classifications also needs to
be integrated. Note that the hand-crafted features of
the Futsal classifications are more symbolic than those
of the STP framework. We must find a way to bring
these two world closer together.

It would be very beneficial if we could compare
different matches against the same team to see if we
can find any differences in strategy.

5.1. Previous Work

Most of the work on Multi-Agent Systems and Oppo-
nent Modeling has been done in the RoboCup domain.
In recent years however a growing interest is shown
in work from the Sports Analysis world. For a variety
of sports, video files from competitions are used to
analyze team behavior.

In work on Formation Analysys for the RoboCup
Simulation League, an 8x8 grid is used to let a Neural
Network recognize pre-defined formations in 10x10
soccer. (Visser2001 [111]). Here a decrease in granu-
larity is used to recognize formations, where a 72.27%
accuracy was achieved. In work, performed by Dis-
ney in cooperation with CalTech and STATS, a method
called Stochastic Variational Imitation Learning is used
to predict the behavior of agents in tracking data from
45 European Professional soccer teams. Based on the
trajectories of the players, a structural model is made,
which serves as a formation analysis. From this the
roles of the agents are inferred in a subsequent phase.

Team Formations
Type Name Phase D M A
2-1-1 Pyramid Defense 2 1 1
3-0-1 Wall Defense 3 0 1
2-0-2 Square Neutral 2 0 2
1-2-1 Diamond Neutral 1 2 1
1-1-2 Y Attack 1 1 2
1-0-3 AllOrNone Attack 1 0 3

Table 5: The most commonly used formations in Futsal. The
last columns show number of Attackers, Defenders and
Midfielders. There are additional formations in which
the keeper is involved as another player.

5.2. Analyzing Formations

One of the biggest problems in classifying a game sit-
uation is the large number of possible permutations

Game Classification
Attack
Half Ball Action Form Opp Action OppF
Opp BuildUp Small Own Half
Opp BU 3rd Man Small Own Half
Opp BU Switch Center Small Own Half
Opp BU HOVO Small Own Half
Own 1 BU Spanish 1-3-1 Pressure Opp Half 1-1-3
Own 1 BU Spanish 1-4-0 Pressure Opp Half 1-1-3
Own BU Own Keeper Pressure Opp Half
Defend
Half Ball Action Form Opp Action OppF
Opp 1 Disturb Buildup 1-1-3 Buildup 1-3-1
Switch
Half Ball Action Form Opp Action OppF
Opp * Disturb Buildup Buildup
Own * Buildup Disturb Buildup

Table 6: Describing Game States in terms of Set-Pieces and STP
Plays. This table only contains the KNVB Set-Pieces.
FIFA and UEFA still have to be added, as well as the
current STP Plays

as a result of relative player positions. Some attempts
have been made to overcome this by decreasing the
granularity of the position grid, but this has a big im-
pact on recognizing patterns. In Soccer- and Futsal
analysis, formations are used to determine such pat-
terns and we want to use the same approach by letting
the network learn to recognize the formations of both
teams.

In Futsal there are several formations, some of which
are used more frequently than others. They also de-
pend on whether the team is attacking or defending.
In order to properly classify the game situation, we
therefore need to determine the current formation of
the teams as part of the game situation. This classifi-
cation is important, since the position of each player
determines its role in the game during that game situ-
ation.

Formations can change dynamically, and while clas-
sifying the game situation, each robot is assigned a
temporary number and role, so we can communicate
about the Set-Piece and the steps that are taken. The
various formations are listed in Table 5 and some of
these formations are also used in the Game Situation
Classification in Table 6. A good overview of these
formations is given in [30].

22



Learning MSL Team Behavior 8.2 - Aug 2019

6. Analyzing Agent Actions

Once the initial Game Situation has been clas-
sified and the Set-Piece has been established,
the steps of the Set-Piece, e.g. the movements

of the agents need to be found and classified. This
involves finding the trajectories of all agents and clas-
sifying these into the roles they play as part of the
current formation.

This analysis takes place on three levels:

1. What the robot does (Actions). These are the move-
ments, derived from the temporal differences in
an episode.

2. Why the robot performs these actions (Intention /
Role). These must be learned, using hand-crafted
features or from an AutoEncoder.

3. How the robot performs that role (Direction / Ve-
locity). These can be learned from the logfile for
our own robots, but cannot be derived for oppo-
nent robots.

Especially the How aspects can play an important
role, since there may be fine nuances in the way that
a role is being executed. For instance a robot may be
rotating with the ball, to hide it from an opponent, or
may be involved in a scrum. That information is not
available for our opponents but could be important.
Therefore we first will investigate if this is an impor-
tant factor with our own robots. If so, we must find
way to infer this information from camera images.

Game Situations
Aspect Reward Steps Occur%
Goal 1.0 0.0 0.0
Shoot 0.8 0.0 0.0
Pass 0.6 0.0 0.0
Receive 0.6 0.0 0.0
Dribble 0.4 0.0 0.0
Get Ball 0.2 0.0 0.0
Lost Ball -1.0 0.0 0.0

Table 7: Different Game Situations the network trains for, their
stepsize, occurrence and rewards. (Info still to be col-
lected)

6.1. Previous Work

An important part of classifying Agent Behaviors is to
determine the Intention of an agent. This is described
in the belief/desire/intention (BDI) approach, which
is a popular technique for modeling other agents (Had-
dadi1995 [?]). Another way is to let a user to enter

the Intention or Role manually during collection of
episodes, like is done in the Pretend Play environment
(Singh2016 [90]). A more recent approach was taken by
STATS and Disney, using a number of AutoEncoders
that take the Game Situation (Context), Trajectory and
Player Identities (Felsen2018 [27]) as inputs to a Con-
ditional Variational AutoEncoder (CVAE). Another
approach is used in a study of people movements in
an apartment Kasteren2008 [102], where Conditional
Random Fields (CRF) are used and compared with a
Hidden Markov Model (HMM). A similar approach,
combined with Attention Networks is described in
(Chen1711 [15])

Figure 15: CVAE Encoder/Decoder (Felsen2018).

6.2. Agent Actions

Using the log data, we know the positions of all players
on the field and so we can calculate the actions of
all agents of a team during an episode. Although
we know the differences in position, the Game State
Images are reduced to a 40x28 pixel grid, in which
position details are rounded to grid cells. We calculate
what action an agent makes and code these in a one-
hot classification, as depicted in Table 8. This reduces
the movements of an agent to a maximum of one cell
per step. Given the maximum speed of the robots, this
is not a problem, but when distances of less than a cell
are traveled, this could mean that information is lost.
Therefore the movements are always calculated on the
actual positions and not on the grid positions.

The network must learn to associate Game Situation
Images with agent actions. To this end first a Convolu-
tional Network (ConvNet) is trained, that transforms
the GSI images to groups of features, that help in deter-
mining the actions an agent takes. Since this happens
in a time sequence, a Recurrent Cell is used in the last
layer of the network, that learns to predict the actions
for each agent. So every step of an episode is first
converted to an image in which the current agent is
identified, and then fed into the network, so it learns
all actions for all agents in a team.

23



Learning MSL Team Behavior 8.2 - Aug 2019

A Recurrent Network is able to make such predic-
tions by receiving rewards towards achieving a goal
and we need a mechanism to give these rewards or
punishments. This will be done by another network,
that learns to classify the game situation and will be
discussed in section 5.

We verify how well the network learns to predict
these actions by comparing the predictions of the net-
work with the actual actions that are defined in the
logfile. However, when using these predictions in the
simulator, all we know is that an agent moves in a
certain direction during a single time step, we do not
know its velocity and also directional information is
less accurate, since it is split into 45 degree steps. The
simulator needs to integrate this information over time
and we will verify if this leads to reliable results.

If this is not the case, we will need to change our
approach from learning a classification of actions to a
regression, and learn the velocity in the X and Y direc-
tion. For that we will need to implement a network
with parameterized action spaces.

Agent Actions
Pos X,Y Degr Class Remark

0,0 0 0

+1, 0 0 1

+1,-1 45 2

0,-1 90 3

-1,-1 135 4

-1, 0 180 5

-1,+1 225 6

0,+1 270 7

+1,+1 315 8

Table 8: Coding agent moves into 9 classes.

6.3. Analyzing Intentions

We generate step-related actions for each agent, be-
cause the simulator needs an update on every cycle.
But such an approach has no bearing on what actu-
ally happens during the game. Therefore we take
a more symbolic approach and take the Intentional
Stance. This has explanatory power, especially if we
can link it on a symbolic level to the known elements

in a Set-Piece or part of the STP framework.
The way that we intend to do that is to take the

trajectory of each robot during an episode and deduce
from this trail, what the intention of the agent is at that
moment. This approach is similar to the way people
movements in a house are classified as activities, using
either Conditional Random Fields or a Hierarchical
Attention Network. We will be training a network to
classify movements into a number of representative
categories, as depicted in Table 9.

This however introduces a problem, because the
Set-Piece learns a number of steps on the symbolic
level, that spans a number of time-steps. The simula-
tor needs position information for each time step. The
network learns a series of steps, while the Set-Pieces
learn the meaning of these steps. STP operates on
the level of a number of roles that are translated into
continuous actions by the TURTLE software. Some-
how we need to find a similar distribution of functions
between the symbolic and sub-symbolic levels. We
have yet to decide how to do that.

6.4. Ball Actions

We also need to learn the behavior of the agent that
handles the ball. Here we need to learn actions and in
addition we have to deal with velocities that are much
higher than one cell per time step. We use the same
approach as with agent movements, but also need
the agent’s intentions with respect to the ball. These
intentions are depicted in Figure 14.

Where agent actions are normally continually mon-
itored and change with each time step, ball actions
are always momentarily. When an agent shoots, this
happens at a given moment, giving the ball a direction
and velocity that shows up in subsequent time frames,
but are no longer correlated with the action of that
step. So the network must learn what the agent did at
the originating moment.

So for Ball actions we need two distinct action com-
ponents, first the action direction part and secondly
the intentional part. Therefore a third stream of the
network must learn both the action sequence and the
intention during the most important step in an episode,
namely the moment where the agent releases the ball.
This situation is called a BallFree moment, namely
OurBallFree or OppBallFree. During this transition
period, the ball can be moving towards a team member
in a Pass, or be moved during a Dribble or during a
Shooting action. Only at the end of the episode will be
clear if this action results in ball loss. This component

24



Learning MSL Team Behavior 8.2 - Aug 2019

Agent Actions
Attack
Game Situation Action Remark
Buildup (BU) Pass Ball To X

Outside In
Inside Out
Triangle on Side
Deep on Blind Side
Shoot on Goal

BU 3rd Man Walk Away Diagonally
One-Two
Rest-Defense
Ball Diagonally
Ball Along Line
Close By X
Close By Other Side
Pass Ball To Incoming X

BU Switch Center Move Deep
Offer In Back Of X
Dribble Shoot On Goal
Play Ball At Pole 2

BU HOVO Play Back and Move Deep
Offer At Side

BU Spanish Keeper Play Deep
Move Behind Opp
Make Space
Play Ball Wide
Play Ball To Mover
Drop Side Own Half
Offer at Center
Turn Back
Long Ball On Deep Mover
Dribble To Goal

BU Own Keeper Play Ball Back To X
Move Deep From Side
Hold Ball
Field Large Ball Side
Move To Pole 2
Give Long Ball

STP Attack-Assist
Open-Passage
Move-to-X

Defend
Game Situation Action Remark
Disturb Buildup Hold-up

Prevent Deep Pass
Force Wide Pass

STP Block-Passage
Move-to-Intercept
Mark-Agent-X
Defend-Line-X
Defend-Area-X

Switch
Game Situation Action Remark
Disturb Buildup Constant Cover

Prevent Deep Pass
Pressure Player Ball

Table 9: Examples of Agent Action Types, derived from the KNVB
Futsal Coaching Manual. This needs to be further refined
and coordinated with STP Actions.

Ball Actions
Action Class Remark
Dribble 0 Keep the ball within 2 grid cells
Pass 1 Shoots in direction of team mate
Receive 2 Detects the ball within its VOF
Shoot 3 Shoots the ball towards the goal

Table 10: Coding ball actions into 4 classes.

of the network is the most complicated and therefore
we will first concentrate on the agent actions, which
are easier to realize and are more in accordance with
existing technology. Together with the Game Situation
Classification it will form the baseline of our approach.

25



Learning MSL Team Behavior 8.2 - Aug 2019

7. The Neural Networks

Many different network architectures exist to
realize Machine Learning applications. Our
research is directed towards an application

that will learn to correctly classify game situations,
predict individual agent’s moves and learn to recog-
nize the intentions of individual players as well as the
entire team. For this we will need a multitude of Neu-
ral Network approaches. In this section we describe
the ones we will most likely be using.

7.1. Network Types

We are studying two different network types to find
out which one best represents the information that
needs to be learned. A Deep Recurrent Q-Learning
Network (DRQN) can learn sequences of up to 100
moves per game situation that capture the temporal
properties of the robot behavior. This will learn to
plan ahead for 100 steps of 10 ms, thus spanning a
period of up to 10 seconds.

The action sequences in such a network are learned
by a recurrent cell at the end of a convolutional net-
work, that transforms the Game Situation Images (GSI)
into input data to the recurrent cell and let it learn
which actions are usually taken by agents of a team,
when confronted with a given game situation.

7.2. Recurrent Networks

Learning the behavior of the players of a soccer team is
a problem of associating actions taken during a game
with the results.

Recurrent Neural Networks (RNN) can be imple-
mented in different ways. Long Short Term Memory
cells (LSTM) and Gated Recurrent Units (GRU) per-
form the same function, but have a different architec-
ture. Bidirectional LSTMs are a variation to this theme,
that generally perform better than their unidirectional
counterparts. We will test the various approaches in
a neural network that will learn sequences of actions
from the logfiles and be used to predict which action
each agent of a team takes during a game.

The digital log files that we use contain low level
information and we concentrate on learning game
actions that maintain ball possession and regaining
the ball, once lost.

7.3. Attention Networks

Recurrent Neural Networks (RNN) with LSTM or
GRU cells only learn dependencies on previous time

Episode steps

GCI, A, R, S

Conv1
4x4 4x4 38x26x3

Conv2
3x3 3x3 10x7x32

Conv3
2x2 2x2 4x64

Conv4
1x1 1x1 2x2x512

rnn-state
hidden-state

rnn
N Steps

StreamA
1/2 rnn

StreamV
1/2 rnn

Advantage

game state

Value
per action

Salience
Image

Q

X[-,0,+] Y[-,0,+]

Loss
per episode

Figure 16: Architecture of the DRQN network

steps. In our case we expect more dependencies to
be relevant, like the position of nearby and opponent
agents, the current game situation, the position of the
ball. More complex dependencies are better repre-
sented by Conditional Random Fields and Attention
Networks.

Figure 17: Unified Attention Model.

We expect that a combination of a Hierarachy of
Attention Networks (HAN) with a Deep Q-Learning
Network (DQN) will be the best approach to learn the
behavior of agents as part of a Set-Piece.

In order to learn the intentions of every agent dur-
ing an episode, we will need to learn sequences of
actions and classify them according to a set of stan-
dard behaviors as described in Table 9.

7.4. Loss and Rewards

In a system, where a DRQN network is used to learn to
improve performance, the Q value is calculated based
on how well the agent performs. So in case of a robot
soccer match, a reward is given if the team keeps or
seizes the ball, moves the ball toward the opponent’s
goal, shoots at the goal or scores a goal. In our case

26



Learning MSL Team Behavior 8.2 - Aug 2019

we need to measure how well the network predicts
the next move. This can easily be done, because our
captured data tells us exactly what happened during
a competition. In fact, it is very important to properly
represent the opponent’s weaknesses, so these can be
exploited during a simulation. Therefore the reward
system should award points when predicting the next
move correctly and give penalties when the next move
differs from the prediction.

Episode steps

GCI, A, R, S

Episode buffer

S, A, R, S1, D

Update Target

5 episodes
Target

5 Buffer samples

S,A,R,S1,D

Q Value

Q1 + Q2

Update Main

100 Episodes
Main

Episode end

Collect Stats

Report

100

Figure 18: Training the DRQN Network

7.5. Training the Neural Network

We are now in a position to let the network learn the
different Game Situations. Our intention is that the
network will find the most important Turnover Point
during a game that leads to a certain event. In Table
7 we listed the different Game Situations in order of
importance. Scoring a goal is the most important
event, but several other events, preceding a goal must
prepare for this. We expect that the log files contain
sufficient information to let the network learn when a
given Game Situation may lead to a better (or worse)
situation.

7.6. Using the network in Simulation

In this project we deal with two simulators: the simple
simulator that is part of this project and the TURTLE
GreenField Simulator. Our simple simulator accepts
single position updates for each time-step and visu-
alizes the contents of the logfiles. When using the
learned Neural Network as input, it will receive the
position predictions for each agent and show this on
the simulated field.

The TURTLE simulator can also visualize a logfile,
but in addition it will take the position information
and use the actual strategy code implementation to
determine the next move for our team. The learned
network needs to output position information for the
competing team, based on the current world model
and therefore needs a Game Situation Image (GSI) as
input for the network.

Because we have both a symbolic and sub-symbolic
level in the learning environment, we need to decide
which one is leading. Somehow, the symbolic (inten-
tional) level is closely related to the step generator and
there will always be two (or even three) outputs on
every time-step:

1. Position information for every agent and the ball
2. Symbolic information for explanation purposes
3. Game Advantage / Threat information

For the position information, the use case is simple.
It will be supplied to the simulator and is used to
update the visualization. The other two are a bit more
complicated, since they provide information that is of
no use to the simulator itself but is used to explain
what the competitor would be doing. However, some
additional information could be provided as well. The
Advantage / Threat information can supply informa-
tion about the current situation and could be used
as coaching information, to advice the team on the
strategy to follow. It could also give an indication of
weak and strong points in the strategy of both teams.

However the information in the Set-Pieces could
also be used to show alternatives or help in analyzing
how other teams would react to a similar situation.
We need to explore these possibilities further, when
the development is in a more advanced stage.

8. Testing various Set-Pieces

This work was originally started as an attempt to learn
to play soccer strategies. At first we intended to learn
from the training manuals for Futsal, as published
by FIFA and UEFA. Later we got in touch with Max
Tjaden, the Dutch KNVB Bondscoach for Futsal, who
gave us the KNVB Futsal Training Manual. We imple-
mented the set-pieces included in that work with the
idea of training a network with these examples and let
the system learn to improve on that.

Although we still maintain that idea, it’s implemen-
tation is a rather big step, so we decided to first con-
centrate on a less ambitious goal and work on learning
to predict the behavior of our opponent teams.

27



Learning MSL Team Behavior 8.2 - Aug 2019

The current work will concentrate on classifying
and predicting action sequences, collected in the MSL
logfiles that we collected over the past 9 years. We
will use the KNVB Futsal Training data to find out
how different teams react to the situations, described
in these exercises, as well as those from the FIFA and
UEFA coaching manuals.

9. Conclusions and further work

28



Learning MSL Team Behavior 8.2 - Aug 2019

References

[1] Symbolic reasoning (symbolic ai) and machine
learning skymind.ai/wiki/symbolic-reasoning.

[2] MachineTalk.org 2019. Create the
transformer with tensorflow 2.0
machinetalk.org/2019/04/29/create-the-
transformer-with-tensorflow. 2019.

[3] Rubikscode.net 2019. Introduc-
tion to transformers architecture
rubikscode.net/2019/07/29/introduction-
to-transformers-architecture. 2019.

[4] Albrecht2018. Not yet summarized.

[5] Andre1998. Not yet summarized.

[6] Kai Arulkumaran, Antoine Cully, and Julian To-
gelius. Alphastar: An evolutionary computation
perspective.

[7] Timur Bagautdinov, Alexandre Alahi, Francois
Fleuret1, Pascal Fua1, and Silvio Savarese. End-
to-end multi-person and action localization and
collective activity. 1431.

[8] Balch1998. Not yet summarized.

[9] Adrien Bennetot, Jean-Luc Laurent, Raja Chatila,
and Natalia Díaz-Rodríguez. Towards explain-
able neural-symbolic visual reasoning. Technical
Report is, 1909.

[10] Birnsted1999. Not yet summarized.

[11] Joydeep Biswas, Juan P. Mendoza, Danny Zhu,
Benjamin Choi, Steven Klee, and Manuela
Veloso. Opponent-Driven Planning and Exe-
cution for Pass, Attack, and Defense in a Multi-
Robot Soccer Team. Technical report, 2014.

[12] Brett Browning, James Bruce, Michael Bowling,
and Manuela Veloso. STP: Skills, tactics and
plays for multi-robot control in adversarial envi-
ronments. 2004.

[13] David Carmel and Shaul Markovitch. Incorpo-
rating Opponent Models into Adversary Search.
2000.

[14] Carlos Celemin, Rodrigo Perez, Javier Ruiz del
Solar, and Manuela Veloso. Interactive Machine
Learning Applied to Dribble a Ball. 2017.

[15] Zheqian Chen, Rongqin Yang, Zhou Zhao†,
Deng Cai, and Xiaofei He. Dialogue Act Recog-
nition via CRF-Attentive Structured Network.
1711.

[16] Guangchun Cheng, Yiwen Wan, Abdullah N.
Saudagar, Kamesh, Namuduri, and Bill P. Buck-
les. Advances in human action recognition: A
survey. 1501.

[17] Francois Chollet. Deep Learning with Python.

[18] Philip Cooksey, Devin Schwab, Rui Silva, Rishub
Jain, Yifeng Zhu, and Manuela Veloso. CMus
2018 Team Description. Technical Report years.,
2018.

[19] Eugenio Culurciello. The fall of RNN / LSTM.
2018.

[20] Lotte de Koning, Juan Pablo Mendoza, Manuela
Veloso, and René van de Molengraft. Skills, Tac-
tics and Plays for Distributed multi-robot control
in Adversarial environments. 2017.

[21] Henk de Swaan-Arons and Peter van Lith. Expert
Systemen. Academic Service, 1984.

[22] DeepMind2019. Learning ex-
planatory rules from noisy data
deepmind.com/blog/article/learning-
explanatory-rules-noisy-data.

[23] Daniel Dennett. Intentional Systems Theory.
1971.

[24] Artur d’Avila Garcez, Marco Gori andLuis C.
Lamb andLuciano Serafini, Michael Spranger,
and Son N. Tran. Neural-symbolic computing:
An effective methodology for principled integra-
tion of machine learning and reasoning. 1905.

[25] Echen. Introduction to Conditional Random
Fields. 2012.

[26] Sean R Eddy. What is a hidden Markov model?
1004.

[27] Panna Felsen, Patrick Lucey, and Sujoy Ganguly.
Where Will They Go? Predicting Fine-Grained
Adversarial Multi-Agent Motion using Condi-
tional Variational Autoencoders. 2018.

[28] FIFA. FIFA Futsal Coaching manual.

[29] Foerster2018. Not yet summarized.

29



Learning MSL Team Behavior 8.2 - Aug 2019

[30] FotsalExpert.com. 6 Amazing Futsal Formations
And Team Setups. 2018.

[31] Andrea Galassi, Marco Lippi, and Paolo Torroni.
Attention please! a critical review of neural at-
tention models in natural language and process-
ing. 1902.

[32] Marta Garnelo and Murray Shanahan. Recon-
ciling deep learning with symbolic artificial in-
telligence: representing objects and relations.
Current Opinion in Behavioral Sciences, 29:17–23,
oct 2019.

[33] Zoubin Ghahramani. An Introduction to Hidden
Markov Models and Bayesian Networks. 2001.

[34] Robit Ghosh. Deep Learning for Videos: A 2018
Guide to Action Recognition. 2018.

[35] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever,
and Sergey Levine. Continuous Deep Q-
Learning with Model-based Acceleration. 1603.

[36] Danijar Hafner. Variable Sequence Lengths in
TensorFlow.

[37] Roland Hafner, Sascha Lange, Martin Riedmiller,
and Stefan Welker. Brainstormers Tribots Team
Description. Technical Report award., 2002.

[38] Harnad. Grounding Symbols in the Analog
World with Neural Nets. Think 2: 12-78 (Special
and Issue on Connectionism versus Symbolism
D.M.W. Powers and P.A. Flach and eds.), 1993.

[39] Matthew Hausknecht and Peter Stone. Deep Re-
inforcement Learning in Parameterized Action
Space. 2016.

[40] Matthew Hausknecht, Peter Stone, Department
of Computer, Science, The University, of Texas,
and at Austin. Deep Recurrent Q-Learning for
Partially Observable MDPs. 2015.

[41] He He. Opponent Modeling in Deep Reinforce-
ment Learning. 2016.

[42] Pablo Hernandez-Leal, Bilal Kartal, and
Matthew E. Taylor. Is multiagent deep reinforce-
ment learning the answer or the question? A
brief survey. University of Alberta CCIS 3-232
Edmonton and Canada, 2018.

[43] Patrick Hohenecker and Thomas Lukasiewicz.
Ontology reasoning with deep neural networks.
1808.

[44] ICLR2018. Composable planning with attributes.
2018.

[45] José Antonio Iglesias, Juan Antonio Fernandez,
Ignatio Ramon Villena, Agapito Ledezma, and
Araceli Sanchis. The Winning Advantage: Using
Opponent Models in Robot Soccer. 2009.

[46] José Antonio Iglesias, Agapito Ledezma, and
Araceli Sanchis. A Comparing Method of Two
Team Behaviours in the Simulation Coach Com-
petition. In V. Torra et al., editors, MDAI 2006,
volume 3885 of LNAI, page 117 – 128. Springer,
2006.

[47] Sina Iravanian and Sahar Araghi. Grid Soccer
Simulator 1.0: User’s Manual, 2011.

[48] Arthur Juliani. Simple Reinforcement Learning
with Tensoflow: Part 3 - Model-Based RL.

[49] Andrej Karpathy. The Unreasonable
Effectiveness of Recurrent Neural Net-
works. karpathy.github.io/2015/05/21/rnn-
effectiveness/2015, 2015.

[50] Konda2000. Not yet summarized.

[51] Andrey Kostyushko. Turn-based football. How
is that possible. 2015.

[52] Mateusz Kurek. Deep Reinforcement Learning
in Keepaway Soccer. 2015.

[53] Hoang M. Le, 1 Yisong, Yue, Peter Carr, 2 Patrick,
and Lucey. Coordinated Multi-Agent Imitation
Learning. 2017.

[54] Agapito Ledezma, R. Aler, Araceli Sanchis, and
D. Borrajo. Predicting Opponent Actions in the
RoboSoccer. 2002.

[55] Hector J. Levesque. Common Sense, The Turing
Test and the Quest for Real AI. MIT Press, 2017.

[56] Ming Liang and Xiaolin Hu. Recurrent Convo-
lutional Neural Network for Object Recognition.
State Key Laboratory of Intelligent and Technol-
ogy and Systems, 2015.

[57] Q. Liao and T.A. Poggio. Symbolic Rea-
soning (Symbolic AI) and Machine Learning
skymind.ai/wiki/symbolic-reasoning.

[58] Qianli Liao and Tomaso Poggio. Object-oriented
deep and learning and by. 2017.

30



Learning MSL Team Behavior 8.2 - Aug 2019

[59] Qianli Liao and Tomaso Poggio. Object-oriented
deep learning. 2017.

[60] Timothy Lillicrap, Jonathan Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra at Google Deep-
mind. Continuous Control with Deep Reinforce-
ment Learning. 2016.

[61] Littman1994. Not yet summarized.

[62] Ziyin Liu, Junxiang Chen, Paul Pu Liang, and
Masahito Ueda. Relational Attention Networks
via Fully-Connected Conditional Random Fields.
2018.

[63] Jason Brownlee Machinelearningmastery.com.
How does attention work in encoder-decoder
recurrent neural networks. 2017.

[64] Gary Marcus, New York, and University. Deep
learning: A critical appraisal. 2017.

[65] Jan Martinovic, Vaclav Snasel, Eliska Ochodkova,
Lucie Zolta, Jie Wu, and Ajith Abraham. Robot
Soccer and -Strategy Description and Game
Analysis. 2010.

[66] Matsubara1999. Not yet summarized.

[67] L.A. Meerhoff, A. de Leeuw, F.R. Goes, and
A. Knobbe. Mining Soccer and Data: Discov-
ering patterns of tactics in tracking.

[68] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Alex Graves, and Ioannis Antonoglou.
Playing Atari with Deep Reinforcement Learn-
ing. 2013.

[69] Volodymyr Mnih, Adrià Puigdomènech, Mehdi
Mirza, Alex Graves, Tim Harley, Timothy P. Lil-
licrap, David Silver, and Koray Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement
Learning. 1602.

[70] Heiko Muller, Martin Lauer, Roland Hafner,
Sascha Lange, Artur Merke, and Martin Ried-
miller. Making a Robot Learn to Play Soccer
Using Reward and Punishment. 2006.

[71] Suraq Nair. A Simple Alpha(Go) Zero Tutorial.

[72] Ehsan Nazerfard, Barnan Das, Barnan Das, and
Diane J. Cook. Conditional Random Fields for
Activity Recognition in Smart Environments.
2010.

[73] Christopher Olah. Understanding LSTM
Networks. colah.github.io/posts/2015-08-
Understanding-LSTMs, 2015.

[74] Ian Osband, Charles Blundell, Alexander Pritzel,
and Benjamin Van Roy. Deep Exploration via
Bootstrapped DQN. 1602.

[75] Matthias Plappert. keras-rl reinforcement learn-
ing library. https://github.com/keras-rl/
keras-rl, 2016.

[76] Shookofeh Pourmehr and Chitra Dadkhah. An
Overview on Opponent Modeling in RoboCup.
2010.

[77] Paul Power, Hector Ruiz, Xinyu Wei, and Patrick
Lucey. “not all passes are created equal:” objec-
tively measuring the risk and reward of passes
in soccer from tracking data.

[78] Hossein Rahmani, Ajmal Mian, and Mubarak
Shah. Learning a deep and model for human
and action and recognition from novel and view-
points. 1602.

[79] RhythmLynx. Definitely Real Foot-
ball. https://rhythmlynx.itch.io/
definitely-real-football, 2017.

[80] Martin Riedmiller, Thomas Gabel, Roland
Hafner, and Sascha Lange. Reinforcement learn-
ing for robot soccer. Autonomous Robots, 27(1):55–
73, may 2009.

[81] Martin Riedmiller, Roland Hafner, Sascha Lange,
Martin Lauer, Dept. of Mathematics, and Infor-
matics. Learning to Dribble on a Real Robot by
Success and Failure. In 2008 IEEE International
Conference on Robotics and Automation Pasadena,
CA, USA, May 19-23, 2008. IEEE, 2008.

[82] Sahota1994. Not yet summarized.

[83] N.J. Sales and R.G. Evans. An Approach to
Solving the Symbol Grounding Problem: Neural
Networks for Object Naming and Retrieval.

[84] Daniel Sanchez Santolaya. Using Recurrent Neu-
ral Networks to Predict Custom Behavior from
Interaction Data - Master Thesis 2017 UvA.

[85] Tom Schaul, John Quan, Joannis Antonoglou,
and David Silver. Prioritized Experience Replay.
Published as a conference paper at ICLR, 2016.

31

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://rhythmlynx.itch.io/definitely-real-football
https://rhythmlynx.itch.io/definitely-real-football


Learning MSL Team Behavior 8.2 - Aug 2019

[86] M.C.W. Schouten. Internship report: The Imple-
mentation of Setplays to the RoboCup middle-
size League. 2018.

[87] John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, Oleg Klimov, and OpenAI. Proxi-
mal Policy Optimization Algorithms. 1707.

[88] By Selene and Báez Santamaría. Predicting op-
ponent team activity in a RoboCup environment.
1997.

[89] David Silver, Thomas Hubert, and Julian Schrit-
twieser. A general reinforcement learning algo-
rithm that masters Chess, Shogi and Go through
self-play. 2018.

[90] Kunwar Yashraj Singh, Nicholas Davis, Chih-Pin
Hsiao, Mikhail Jacob, Krunal Patel, and Brian
Magerko. Recognizing actions in motion trajec-
tories using deep neural networks. Technical
Report of, 2016.

[91] Luc Steels. The Symbol Grounding Problem has
been solved. So what’s next. 2005.

[92] Timo Steffens. Feature-Based Declarative
Opponent-Modeling. In D. Polani et al., edi-
tors, RoboCup 2003, volume 3020 of LNAI, page
125–136. Springer, 2004.

[93] Peter Stone, Richard S. Sutton, and Gre-
gory Kuhlmann. Reinforcement Learning for
RoboCup Soccer. 2005.

[94] Peter Stone and Manuela Veloso. Multiagent
Systems: A Survey from a Machine Learning
Perspective. AT&T Labs and — Research and
Computer Science and Department and 180 Park
Ave and room A273 Carnegie Mellon University
and Florham Park and NJ 07932 Pittsburgh and
PA, 2000.

[95] Sunehag2018. Not yet summarized.

[96] Istvan Szita and Andras Lorincz. Learning Tetris
Using the Noisy Cross-Entropy Method. 2006.

[97] Max Tjaden. KNVB Futsal Coaching manual.

[98] Felipe W. Trevizan and Manuela M. Veloso.
Learning Opponent’s Strategies in the RoboCup
Small Size League. 2010.

[99] UEFA. UEFA Futsal Coaching manual.

[100] Lecture Notes Stratchclyde University. Making
Better Decisions - Opponent Modeling.

[101] Hado van Hasselt, Arthur Guez, and David Sil-
ver. Deep Reinforcement Learning with Double
Q-learning. 1509.

[102] Tim van Kasteren, Athanasios Noulas andG-
wenn Englebienne, and Ben Kröse. Accurate
Activity Recognition in a Home Setting. 2008.

[103] Peter van Lith. Kunstmatige Intelligentie. CACI,
1982.

[104] Peter van Lith, Marinus van de Molengraft, Gijs
Dubbelman, and Martin Plantinga. A Minimal-
istic Approach to Identify and Localize Robots
in RoboCup MSL Soccer. 2018.

[105] M.E. van ’t Klooster. Deep Learning for Oppo-
nent Action Prediction in Robot Soccer Middle
Size League, Master Thesis TU Eindhoven. 2018.

[106] Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Google Brain, Google Brain,
Google Research, and Google Research. Atten-
tion is all you need. 1706.

[107] Veloso1996. Not yet summarized.

[108] Veloso1997. Not yet summarized.

[109] Marco Verch. What Are Saliency Maps in Deep
Learning?

[110] Phongtharin Vinayavekhin, Subhajit Chaudhury
andAsim Munawar, Don Joven Agravante, Gio-
vanni De Magistris, Daiki Kimura, and Ryuki
Tachibana. Learning and Understanding using
Attention, Focusing on What is Relevant: Time-
Series. 1806.

[111] Ubbo Visser, Christian Druc̈ker, Sebastian
Hub̈ner, Esko Schmidt, and Hans-Georg Weland.
Recognizing Formations in Opponent Teams. In
P. Stone, T. Balch, and G. Kraetzschmar, editors,
RoboCup 2000, volume 2019 of LNAI, pages 391–
396. Springer, 2001.

[112] Hanna M. Wallach. Conditional random fields:
An introduction. Technical Report MS-CIS-04-21,
2004.

[113] Heng Wang and Cordelia Schmid. Action
Recognition with Improved Trajectories. ICCV
- IEEE International Conference on Computer
Vision, Dec 2013, Sydney, Australia. pp.3551-
3558,10.1109/ICCV.2013.441 . hal-00873267v2,
2013.

32



Learning MSL Team Behavior 8.2 - Aug 2019

[114] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado
van Hasselt, Marc Lanctot, and Nando de Fre-
itas. Dueling Network Architectures for Deep
Reinforcement Learning. 1511.

[115] Skymind Wiki. A Beginner’s Guide to
Attention Mechanisms and Memory Net-
works. skymind.ai/wiki/attention-mechanism-
memory-network.

[116] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and Philip S.
Yu. A comprehensive and survey on graph and
neural and networks. IEEE, 2019.

[117] Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng
Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized Deep
Q-Networks Learning: Reinforcement Learning
with Discrete-Continuous Hybrid Action Space.
2018.

[118] Joyce Xu. Beyond DQN/A3C: A Survey in Ad-
vanced Reinforcement Learning.

[119] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong
He, Alex Smola, and Eduard Hovy. Hierarchical
Attention Networks for Document Classification.
2008.

[120] M Yoon, J Bekker, and S Kroon. New rein-
forcement learning algorithm for robot soccer.
ORiON, 33(1):1, jun 2017.

[121] Hong-Bo Zhang, Yi-Xiang Zhang, Bineng Zhong,
Qing Lei, Lijie Yang, Ji-Xiang Du, and Duan-
Sheng Chen. A Comprehensive Survey of
Vision-Based Human Action Recognition Meth-
ods. 2019.

[122] Qunzhi Zhang and Didier Sornette. Learning
like humans. 1707.

33



Learning MSL Team Behavior 8.2 - Aug 2019

10. Appendix

10.1. Previous work

In this section earlier work on learning behaviors with
robots is discussed. It forms the basis for the previous
work section. (Still to be completed.)

10.2. Tutorials

During the initial investigation a number of tutorials
and books have been very helpful in finding the rele-
vant literature. We will describe each of them and list
their main contributions that lead to the analysis of
the papers mention in the following sections.

10.2.1 Chollet2018 - Deep Learning with Python
[17]

This book on using TensorFlow with Keras was used
along with Adrian RoseBrock’s book on Python. Chol-
let is the creator of Keras and contributed to the de-
velopment of TensorFlow. The book has been very
informative and helpful during development.

10.2.2 Santolaya2017 - Using Recurrent Neural Net-
works to Predict Custom Behavior from In-
teraction Data - Master Thesis 2017 UvA [84]

This Master Thesis gives a good overview of the avail-
able literature on Recurrent Networks and provides a
tested example of using a recurrent network.

10.2.3 Strathclyde2017 - Lecture Notes - Making
Better Decisions - Opponent Modeling [100]

This is a presentation with informative sheets about
various Opponent Modeling approaches.

10.2.4 Juliani2019 - Simple Reinforcement Learn-
ing with TensorFlow: Part 3 - Model-Based
RL [48]

This excellent tutorial with many detailed coding ex-
amples for the various approaches for Reinforcement
Learning. We are using the DRQN version. At the end
there is also a reference to Actor Critic systems.

10.2.5 Hafner2019 - Variable Sequence Lengths in
TensorFlow [36]

In our use case, experiences are formed from the Mat-
lab log files. In these files we have variable sequence
lengths. This article explains how to implement these
in TensorFlow.

10.2.6 Nair2017 - A Simple Alpha(Go) Zero Tuto-
rial [71]

We use this software, along with Juliani as a basis for
the Alpha-Zero part of our system. Currently this is
not yet in use, since we first concentrate on learning
an Opponent Model.

10.2.7 Verch2017 - What Are Saliency Maps in
Deep Learning? [109]

In the sample DRQN system of Juliani [48], that we
use, saliency images are generated during exploration.
This article explains what Saliency is. We use this
facility in our visualization software.

10.2.8 Xu2018 - Beyond DQN/A3C: A Survey in Ad-
vanced Reinforcement Learning [118]

A good overview of most recent developments in
DQN/A3C and attention in Recurrent Networks.

10.2.9 Brownlee2017 - How Does Attention Work
in Encoder-Decoder Recurrent Neural Net-
works [63]

Good introduction on the Attention Mechanism in
Encoder/Decoder RNNs.

10.2.10 Plappert2016 - Keras-RL Github Repository
with examples (8) [75]

10.3. Papers on General Opponent Model-
ing

Opponent Modeling is the main technique we are go-
ing to use, to learn the behavior of opponent teams.
As we do not have detailed information about strate-
gies, we will first learn our own strategies and use our
log-files to verify if our learning method is accurate
enough. When that works, we use the same approach
to learn the strategies of our opponents. The following
papers describe what has been done so far on this sub-
ject. Most approaches use Implicit modeling, where
the actual model is hidden and used to adapt a team’s
strategy. We are interested in Explicit Modeling, which
has been studied much less.

10.3.1 Stone2000 - Multi-agent Systems: A Survey
from a Machine Learning Perspective [94]

This is the seminal paper on Multi Agent Systems
(MAS). It gives an overview of work done up till

34



Learning MSL Team Behavior 8.2 - Aug 2019

2000 and lays the foundation for the study of Ma-
chine Learning in Soccer. In this survey Single- and
Multi Agent Systems are analyzed in four different
categories, each in two major domains; the pursuit
world and robot soccer:

1. Homogeneous non-communicating agents
2. Homogeneous communicating agents
3. Heterogeneous non-communicating agents
4. Heterogeneous communicating agents

For each of these classes of agents, examples are
given, as well as references to literature where these
systems have been studied. In all cases they are also
viewed in the context of learning systems. Another
aspect that is described is benevolence against compet-
itive agents. In robotic soccer, the Team Partitioning,
Opaque-Transition Reinforcement Learning (TPOT-RL)
of Stone (2000) is described. In this approach agent
are capable to learn to adapt their behavior based on
the opponent’s perceived strategy. This has also been
studied when one of the teams is learning. But when
both teams are learning no stable solution was found.

Agents that cannot communicate are forced to
model each other’s behavior. In our case our own
agents communicate, but there is no information on
the opponent, so that behavior has to be modeled.
References are made to work, in which the game situ-
ations, plans, goals, actions and roles of the opponent
are modeled.

In case of a communicating team, members need to
agree on the roles they play and there is frequent men-
tion of the locker-room agreement (Stone and Veloso
1999). Agents that cooperate need to make commit-
ments to the team goals. This is described in the
belief/desire/intention (BDI) approach, which is a
popular technique for modeling other agents (Had-
dadi1995 [?]).

A large section is dedicated to robotic soccer and
much of the research is a precursor to the RoboCup
initiative, which started in 1996 (Kitano 1996, 1998,
1999, Veloso 2000). Another interesting approach is
a system that generates commentaries to observed
soccer matches automatically, called SOCCER. This
system is based on observing human soccer games and
announces important events in an observed game. A
ground-breaking development was Dynamite, which
was used to develop Reactive Deliberation which was
based on a number of hard-wired behaviors (Sahota
1994). It served as the basis and inspired much of
Stone’s work on robotic soccer. Minimax-Q Learning
for Markov games was used in a simulated soccer
game (Littman 1994) formed the basis for the later

Soccer Simulation Server (Stone and Veloso 1996) .
This server was also used in a commentator system
ROCCO (Andre 1998) and MIKE (Matsubara 1999)
and Byrne (Birnsted 1999).

Gradually more work was done on decomposing
soccer tasks into different roles. A system with dy-
namically changing roles was developed by (Balch
1998) later followed by a RL approach, where an entire
team learned effective behaviors instead of individual
behaviors. Hierarchical task decomposition became
the accepted way to let entire teams learn collective
behaviors (Uther and Veloso 1997). It becomes clear
that here, the foundations were laid down for later de-
velopments like STP (Browning 2004 [12]) and similar
approaches.

10.3.2 Carmel2000 - Incorporating Opponent Mod-
els into Adversary Search [13]

This is one of the first examples of Opponent Modeling,
using the M* algorithm, a modified alpha-beta search
algorithm, which tries to find the best response to
a given game situation. It introduces swindle and
trap approaches, that let the opponent believe some
strategy is being followed, that later on proves to be a
disadvantage to the opponent. Like most of the early
work on Opponent Modeling it is based on a statistical
approach and does not return action sequences.

10.3.3 Hernandez-Leal2018 - Is multi-agent deep re-
inforcement learning the answer or the ques-
tion? [42]

This survey of Opponent Modeling gives a systematic
overview of the various approaches, developed over
the past 20 years. It starts with the work of Stone and
Veloso on Multi Agent Systems (MAS) [94].

It describes Single Agent Learning, followed by Re-
inforcement Learning, working toward the latest re-
search on Agent-Critic algorithms. It then describes
the work done on Deep Reinforcement Learning, like
Q-Learning, of which Value-based methods like DQN
are the baseline method. In most of the DQN ap-
proaches several input stages are stacked to represent
time series, but generally speaking these systems can-
not handle more than 4 time steps. Time sequences
are better represented by Deep Recurrent Q-Learning
Networks (DRQN) in which an LSTM layer learns
the time-steps. Some systems have multiple LSTMs
to represent different time-scales. Most of these sys-
tems work in discrete action spaces, where actions are
classified as single actions.

35



Learning MSL Team Behavior 8.2 - Aug 2019

In cases where the action space is continuous, like
with soccer, actions are normally related to speed
and/or direction and require a different approach,
which is handled by Policy-gradient methods, like
Deep Deterministic Policy Gradient (DDPG). Actor-
Critic systems like A2C and Asynchronous Advan-
tage Actor Critic (A3C) algorithms employ multiple
networks that learn different aspects and are able to
output continuous values. They depend on an Experi-
ence Replay (ER) buffer. In most cases such a buffer is
either filled by exploring random possibilities or filled
from live examples. In our case, the log files form a
natural Experience Replay buffer. When learning new
approaches, exploration is a requirement and is used
for instance in Alpha-Go and the Atari games. If there
are enough samples, the experience buffer is exploited
to learn existing behaviors. Many new variants of
these approaches have been developed recently.

For Multi-agent Deep Reinforcement Learning
(MDRL) learning is more complicated. Instead of
learning individual behaviors, such systems also learn
team behaviors. Multi-agent research is divided into
four categories:

1. Analysis of emergent behavior
2. Learning communication
3. Learning cooperation
4. Agents modeling Agents

We are most interested in the last category, where
DRQN is succeeded by Deep Reinforcement Opponent
Networks (DRON), where Q-values are learned that
find representations of the opponent policy. The first
approaches use hand-crafted features, that the network
learns to recognize. Another approach is Self Other
Modeling (SOM) which concentrates on finding out
the opponent’s goals based on the known behavior
of a team’s own agents. Most recent approaches here
are Learning With Opponent Awareness (LOLA) and
Theory of Mind Network (ToMnet). The main goal
of such an approach is to predict the opponent’s next
action.

The most important aspects of most approaches
are the following: The Experience Replay (ER) buffer,
where sometimes additional information is added to
disambiguate the contents. Parameter sharing is an-
other important aspect, where parts of a network are
shared to learn different aspects of the same game
state. Recurrent networks are an important part to
learn time sequences. Lastly a new network approach
of ensembles is used to avoid over-fitting of opponent
models.

In most cases hand-crafted features can speed-up
the learning process, but more work is being done to
let the network find out these features by itself. Self-
Play and Monte-Carlo search is extensively used in
most modern learning systems. However almost all of
these approaches learn opponent policies as a method
of learning proper responses to game situations. They
all use Implicit Opponent Models, that are input to a
learning system that finds new strategies. The most
modern approaches even take this learning ability
into account and model the fact that the opponent
learns from its experience and uses this to coerce the
opponent into taking actions that open opportunities
for its own benefit.

In our case we are currently more interested in Ex-
plicit Opponent Modeling, which is a more static ap-
proach and is aimed at best representing the current
opponent strategies. Here the use of continuous state-
and action spaces is most interesting.

10.3.4 Browning2004 - STP: Skills, Tactics and
Plays for multi-robot control in adversarial
environments. [12]

In this paper the mechanism of the STP is explained.
Our team implemented STP in 2019 and so our 2019
log-files will include data related to this approach,
developed for the Small Size League (SSL) as part of
the CMU robot team. A range of articles was written
on this subject and many improvements have been
made to the approach since this paper. The main
point is that most of the ’logic’ in this approach is
coded in the PlayBook and the State Machines that
implement the ideas. Only some small fragments of
this are described in this paper. Also one of our team
members (Koning [20]) has written a paper about the
applicability of STP to our robots. A similar paper has
been written about the CAMBADA approach, which
is comparable to STP. (Schouten [86]) Both approaches
use a centralized approach. In the SSL there is a central
computer, in the CAMBADA approach, the central
Coach computer is used.

10.3.5 Purmehr2010 - An overview on Opponent
Modeling in RoboCup Soccer Simulation
2D. [76]

In this overview article the most important approaches
for Opponent Modeling used in the Simulation League
are described. There are two main streams, sometimes
combined; Team Strategy Classification and Agent
Action Classification. What is looked for is mostly

36



Learning MSL Team Behavior 8.2 - Aug 2019

Formation, Offense and Defense strategy and Pass
graphs. The most important work is based on the
Coach Competitions, where a single agent controls
an entire team, based on accurate data from the sim-
ulator. Information for individual agents is injected
with noise in the simulator and makes using this data
less useful. The Coach information is noise-free and
is therefore preferred for these purposes. Riley and
Veloso use a windowing approach to classify Game
Plays. This uses some 30-37 hand-crafted classes and
achieves an accuracy of 40%. Iglesias uses a similar
approach to classify hand-crafted features into a so-
called trie structure (pass1to2->dribble2->pass2to10-
>goal10). Steffens uses 2-13 hand-crafted features in
Feature Based Declarative Opponent Modeling in de-
scriptions like "Opponent often does long pass along
the left wing" Later on this work uses Case Based Rea-
soning. To classify agent actions there generally are
not enough examples for specific cases, which is in-
creased by fuzzyfication. Most work tries to recognize
simple behaviors like intercept, pass, dribble. Another
approach uses triangular graphs to create topological
structures. In another work an Expert System is used
to model the opponent game using heuristic rules. To
find team strategies some approaches classify the team
formation, like 5:2:3 to describe how the team behaves.
In Ayanegui-Santiago such formations are recognized
by a neural network. Ledezma classifies individual
agent actions into a hierarchical schema. In later work
this is stored in a decision tree. The general conclusion
of this overview is that opponent modeling could be
very useful but that much more research is needed.

10.3.6 Koning2017 - Skills, Tactics and Plays for
Distributed multi-robot control in Adversar-
ial environments [20]

This paper explains how STP can be used in the TUR-
TLE environment, where control is distributed. CAM-
BADA solves this problem by using a central Coach
computer. In this proposal all robots take a vote for
a certain play and the majority vote is communicated
to all robots. Like in the original STP paper, we need
to define our own Playbook and Tactics, while our
existing skills will be used. Tactics are mainly based
on our current Role Assignment algorithms. There
is mention of different Playbooks, depending on the
opponents. For our project we need to collect all Plays,
Tactics and Skills because these may be the features
that a Neural Network needs to search for.

10.3.7 Klooster2018 - Deep Learning for Oppo-
nent Action Prediction in Robot Soccer MSL.
[105]

In this Paper one of our team members developed a
Convnet that learns 3 different situations:

1. RefBox situation classification (Kickoff, ThrowIn,
FreeKick, Corner, Penalty, GoalKick, Dropped-
Ball)

2. Occurred actions, divided into Pass, Shot on Goal
and Other actions

3. Future Opponent Actions.

This last one is the main goal of the work and is
achieved by creating images with movement traces for
all robots and the ball, in washed-out color depending
on how long ago this happened for a period of up to
5 seconds (100 time steps).

This 2-layer network achieved a 98% accuracy on
the RefBox task, 82% on the Actions task and 72%
on the Opponent prediction task. It uses a stacked
input frame approach, contrary to our approach with
a Recurrent Network. See the work of Hausknecht
and Stone [40] for a description of the differences.

10.3.8 Schouten2018 - The Implementation of Set-
plays to the RoboCup middle-size League
[86]

This paper describes a study made at CAMBADA in
2017/18. It describe the STP equivalent, developed by
CAMBADA that is closely integrated with the RTDB,
which we are also using in the TURTLEs. It also is a
three layered approach, consisting of Setplays, Roles
and Behaviors. Condition checking is different from
the STP approach and it seems that in some cases
(like with a pass), the play is started or continued,
even when the conditions are not met, since they are
not checked during execution. Whereas in STP the
selection of a Play is done by each player and com-
municated to all other team-members, here this role is
assumed by the Coach, a computer that is monitoring
all team player activities and decides which roles are
being assigned. The system keeps track of when set-
plays have been selected and if they were successful,
so they can be used to improve future usage. There
is a nice section on selecting the right angle to shoot
at the goal, based on the number of points that are
the best option to score. Something that seems a large
disadvantage is that different field sizes require the
definition or adaptation of set-plays, since location
information is absolute. One nice thing is the interac-
tive definition of Setplays using the SPlanner2 GUI. It

37



Learning MSL Team Behavior 8.2 - Aug 2019

allows definition and modification of Setplays and is
directly coupled with the agent software to test if a
Set-play is executable and is tested before submitting
it. We also developed an interactive Setplay editor,
based on the KNVB Futsal training manual. We have
adopted the term Set Pieces, which is the terminology
used in the Futsal documentation of KNVB, FIFA and
UEFA. We also have similar information about the
training manuals from FIFA and UEFA. We intend to
use this as test-cases to see how the various teams han-
dle these standard Set Pieces. Case Based Reasoning
is mentioned several times in this paper and also in
others and we need to look into this. Also check their
TDPs from 2016 and 2017.

10.3.9 Lith2018 - A Minimalistic Approach to Iden-
tify and Localize Robots in RoboCup MSL
Soccer[104]

In this prelude to our current work, digital images
from the omnidirectional camera’s of our TURTLE
robots were used to recognize robots from our own
team and the opponents. These images were then used
to create an Agent Situation Imagev(ASI) as an occu-
pancy grid, spanning a circular area with a radius of
6 meters. These images, together with a world model
in which all robots are depicted are to be used in the
system that is described in this paper. The localization
work is not yet finished and still has problems when
robots have identical colors, like the blue status lights,
that some robots have.

10.3.10 Meerhoff2019 - Mining Soccer and Data:
and Discovering patterns of tactics in
tracking[67]

This unpublished paper represents the work of the
Leiden Institute of Advanced Computer Studies (LI-
ACS) where data-mining techniques are used to find
statistical information that identifies weak or strong
game situations. This is done by analyzing the posi-
tions of all players of a team and find configurations
like the spread of the team, the shape of the team
layout, distances to peer robots, the ball, the goal etc.
The analysis of digital or hand-collected position data
during a game generates a large collection of table
rows, that are correlated with known game situations
to find statistically significant information. This ap-
proach was used on our own data to find out if there
is any overlap between this and our own work. The
results are to be included in our paper.

10.4. Opponent Modeling

10.4.1 Iglesias2009 - The Winning Advantage: Us-
ing Opponent Models in Robot Soccer [45]

This paper describes the RoboCup opponent modeling
challenge. Reference is made to Iglesias and Ledezma
on Caos coach 2006 simulation team in which the ba-
sis for this work was created. Kuhlman and Stone
(2009) characterize team behavior as a set of features,
calculated from statistics collected during game ob-
servations. Fathzadeh (2008) describes a rule-based
expert system to classify games. Iglesias and Ledezma
(2008) presented the CAOS system to model and rec-
ognize team behavior. It classifies actions as one of
Pass, Dribble, Intercept, Steal, Goals Missed, Foul and Hold.
They developed a visual tool called Viena in which
they create patterns, stored in the CAOS Pattern Li-
brary. These patterns are expressed in a language
called CLang with descriptions like: (bowner opp(5) (do
our(4) (intercept) (pass-Opp6-Opp8))

10.4.2 Trevizan2010 - Learning Opponent’s Strate-
gies in the RoboCup Small Size League [98]

The CMUDragons team introduces a technique to clas-
sify the opponent defense strategy by defining a num-
ber of features, like distance from the ball, distance to
the goal, distance between the robots and collect these
in matrices, organized by episodes. The number of
goals scored is taken as a measure to define how well
the defense is against the CMDragons. They refer to
other work, where decision trees and payoff matrices,
using the prisoner’s dilemma as examples. Another
approach uses conditional random fields to classify the
roles of robots. references 1, 14 and 15 may be relevant.
It uses a statistical approach to compare strategies by
using the Frobenius norm. This might be comparable
to the metrics used by LIACS.

10.4.3 Mnih2013 - Playing Atari with Deep Inforce-
ment Learning [68]

This is the seminal DeepMind paper, describing how
Atari games were learned from watching screen im-
ages of games like Pong and others, learning actions
from a convolutional neural net (ConvNet). Where
most earlier approaches were based on hand-crafted
features and policy representations, this work used
raw screen images to learn to play a variety of Atari
games with the same architecture, dubbed Deep Q-
Learning Networks (DQN). The basis for this work is
formed by the Bellman equation, which was extended

38



Learning MSL Team Behavior 8.2 - Aug 2019

to use an experience replay buffer, from which random
samples are taken to learn which sequences of actions
lead to the highest future reward. it uses four stacked
input frames to represent a sequence and learns the Q
function in a separate network for each of the discrete
actions. These Q values are used in the main network
to learn the best action to take, given a certain state.
By making the update frequency of the Q-Learning
network much lower than that of the main network, a
stable learning situation is created, that makes this ap-
proach feasible. Many variations to this approach have
been tried later on, which improved on this approach,
eventually leading to the Alpha-Go and Alpha-Zero
systems.

10.4.4 Mnih1602a - Asynchronous methods for
Deep Reinforcement Learning [?]

This paper describes asynchronous versions of the four
most used RL algorithms. It replaces the Experience
Replay buffer by a parallelization approach that leads
to faster and better search of policies. Several terms
keep coming back in this literature, that need further
exploration and explanation:

1. on-policy and off-policy learning
2. Value-based and policy-based RL
3. model-based and model-free learning
4. one-step and n-step Q-learning
5. RSG, RMSProp and RMSProp with shared statis-

tics
6. Discrete actions and Continuous actions

10.4.5 He2016 - Opponent Modeling in Deep Rein-
forcement Learning [41]

This work describes a DQN approach with a (very)
simple soccer simulation, in which implicit model-
ing is used to learn behaviors based on opponent
actions. It tests two strategies: Concatenation and
Mixture-Of-Experts (MOE) in which a separate model
learns the opponent strategies as a hidden property.
So, although the strategy is learned, it is not stored
as explicit knowledge. The simulation is based on
2 players on a 6x9 grid, using limited hand-crafted
strategies, that the DQN network has to learn. The Q
values that are learned are the best actions, based on
the game situation in relation to the opponent strategy.
It makes references to earlier work in which a sepa-
rate opponent model is created from Davidson 1999,
Ganzfried & Sandholm 2011 and Schadd et al 2007.
Need to check these references as well. Related work
in Explicit Opponent modeling is found in Uther &

Veloso 2003 (decision Trees), Foerster et al 2016 (Neu-
ral Network), Hausknecht & Stone 2015 (DQN). There
is also a reference to work on DRQN from Eigen et al
(2014)

10.4.6 Lillicrap2016 - Continuous Control with
Deep Reinforcement Learning [60]

In DQN [68] a number of Atari games were learned
by a Deep Q-Learning network, using pixels data as
input. This work describes an extension of DQN into
a new approach called Deep Deterministic Policy Gra-
dients (DDPG). In this approach the existing DQN is
extended to allow learning continuous functions, so
that instead of discrete actions now values like forces
and directions can be learned. The DQN network is
extended with actor-critics that use an Experience Re-
play buffer (ER) to learn Policy Gradients instead of
a Policy. Previously it was thought that this was im-
possible, since the solution space becomes intractable.
Using Batch Normalization in all layers.combined with
an Actor Critic made this approach possible. The Tar-
get network is not updated regularly by copying all
weights, but uses soft target updates. They are also
constrained to values between 0 and 1 by batch nor-
malization. They also report that learning from pixels
is just as fast as learning from underlying state de-
scription values.

10.4.7 Steffens2004 - Feature-Based Declarative
Opponent-Modelling (8) - [92]

this paper describes an early approach to define and
learn an opponent model, based on specific features
in the input of log files. It is based on the Simula-
tion League Coach Server, which keeps information
about played games. Its aim is to compare tactics of
various teams and to create counter-strategies. The
approach is named Feature Based Declarative Object
Model (FBDOM) It uses the Standard Coaching Lan-
guage (CLang) to define rules and actions and learns
two distinct models using a Situation-detector and an
Action-detector. It does not represent all possible sit-
uatins, just a subset in the form of if-then rules. The
models were built from just one or two games per team
and proved to be distinct for most teams and concen-
trated on the offensive strategy only. In some cases the
strategies of teams seemed very similar. testing of the
models was done by building a counter-strategy and
then play against this to see how many more goals this
strategy scored. It was also tested against a random
strategy to make sure the counter-strategy was effec-

39



Learning MSL Team Behavior 8.2 - Aug 2019

tive. Only in the case of teams with similar strategies
no significant differences were found. The main point
in this approach is the use of a rule-based architecture,
which enabled the system to provide explanations for
the exhibited behavior. That is very important for our
approach.

10.4.8 Ledezma2002 - Predicting Opponent Actions
in the RoboSoccer (8) - [54]

In this work a model is built, using a classifier, that
identifies the actions taken, given some situations and
a separate data structure that quantifies the action,
for instance with a speed or an angle. It uses a rule-
modeler (c4.5 Quinlan1993) to learn the classification
and a regression tree (M5 Quinlan1993) to represent
the strategy. Here too this architecture is selected to
allow understanding of the generated rules. The sys-
tem consists of an Action Modeler, a Rule Learner and
a Parameter Learner. These are input to a reasoning
module, that uses the rules to reason about the strategy
and to provide explanations. The number of attributes
and action classes is relevant for the recognition perfor-
mance, which started out as 45% and with additional
reconfiguration was reduced from 140 attributes to 32
and from 31 classes to 7, resulting in a 72% recogni-
tion capability. By creating an attribute level paired
with a class level a hierarchical structure developed,
leading to the name of Hierarchical Learning for this
approach.

10.5. Strategy and Tactics

In this subsection papers are included that concentrate
on Strategic and Tactical methods to control a team.

10.5.1 Martinovic2010 - Robot Soccer - Strategy De-
scription and Game Analysis [65]

In this paper a very simple 2-player soccer simulator is
used to teach a DQN to recognize action patterns and
learn responses to this. In this case the system learns
the implicit strategy of the opponent in an attempt
to directly learn to react in response to the opponent
strategy. It creates three matrices, one for the ball, one
for the opponent and one for the own team. These
matrices are like an occupancy grid, in which a 1 repre-
sents the presence of an object. The system maintains
two different world models, a strategy level and an
abstract level. The strategy level is a coarse represen-
tation that compresses the field to small dimensions,
so that patterns become dense and more similar. The
abstract model has real world coordinates and is used

to translate between the strategy level and reality. The
most important thing is to match different patterns,
which is done in a way that is not described very
clearly in this paper.

10.5.2 Hausknecht2016 - Deep Reinforcement
Learning in Parameterized Action Space
[39]

Most DQN approaches learn a set of discrete actions.
However in soccer the learned actions are in most
cases instances where speed and direction are impor-
tant properties that quickly become inaccurate, when
reduced to discrete actions. In most cases an action
will be represented with a description and a quan-
titative indication like move-forward with speed 80.
So it becomes important to have a network that can
learn parameterized actions. Standard DQN networks
can only output discrete classes. Therefore Deep De-
terministic Policy Gradient (DDPG) networks were
developed in Lillicrap 2015 in which actions (policies)
are expressed as a gradient. This approach is further
expanded into a DQN that outputs both an action and
its associated parameters. In this work a simplified
version of RoboCup simulation is used, in which an
agent learns to shoot at the goal. It learns four actions:
Dash, Turn, Tackle and Kick, each associated with
one or two parameter, giving: Dash(power, direction),
Turn(direction), Tackle(direction) and Kick(power, di-
rection). In order to learn, rewards are given, but
because scoring a goal results in very sparse rewards,
hand-crafted intermediate rewards like Move-to-ball-
reward and Kick-to-goal-reward. This reward engi-
neering is necessary to reach convergence. Several
earlier attempts have been made to realize modeling
action spaces like, decaying traces, re-currency and
double Q-learning. Actor/critic systems first decou-
pled action learning from values functions. It uses a
target network to learn Q values separated from the
actions.

One problem to be solved by this new approach is to
keep the values learned within the bounds of accept-
able values, like -180 to 180 degrees for direction and 0
to 100 for speed. This work investigates three possible
approaches to this problem by modifying the learned
values when they crossed the boundaries: zeroing,
squashing and inverting the gradients. It proves that
only inverting the gradients works as desired. How-
ever this approach is quite process intensive. It takes
three days on an NVidia Titan X GPU. It resulted in
performing better than the best hand-crafted agents.

40



Learning MSL Team Behavior 8.2 - Aug 2019

10.5.3 Xiong2018 - Parameterized Deep Q-
Networks Learning: Reinforcement Learn-
ing with Discrete-Continuous Hybrid
Action Space [117]

This work extends the work of Hausknecht2016 and
introduces a hybrid between DQN and DDPG in a
new approach called Parameterized DQN (P-DQN).
Instead of a double network in which a critic learns
the Q-Values and the target network learns the Actions
and associated parameters, this network directly learns
the actions in one network and the parameter values in
another network. It used an asynchronous approach
to speed up the learning process.

10.5.4 Biswas2014 - Opponent-Driven Planning
and Execution for Pass, Attack, and Defense
in a Multi-Robot Soccer Team [11]

This paper describes new methods in the CMUDrag-
ons SSL team architecture namely:

1. Pass-Ahead. Instead of passing to the location of
a known teammate, a pass is made to a future
location from where the probability of making a
direct kick at the goal is the highest.

2. Coerce and Attack. This approach detects op-
ponent team roles and attempts to make them
deviate from their plan to create openings that
allow a better attack on the opponent.

3. Threat-based defense. Tries to anticipate oppo-
nent passes and tries to block them.

In the last two cases, information about the roles
of the opponents is required. The work is based on
STP, which consists mainly on human-generated plans.
To calculate the best passing positions, the 6x4 meter
field is represented by a 6x4 grid in which potential
fields are used to find the best cells. Passes are gen-
erally done as flat passes, a chip pass (lob shot) or a
yanking pass, which a backspin effect is given to the
ball. For the Coerce and Attack plan, an analysis is
made of the opponent roles. They are classified as
robot-following or ball-following behaviors, further
subdivided into Primary defenders (ball-following),
Mark (robot-following) and Wall (also robot-following).
The Coerce And Attack Planner (CAP) calculates the
probability of each opponent being one of the three
defenders by generating an area around each robot for
each of the roles and uses this information to estimate
the probability of the robot playing that particular role.
To analyze the performance, two scores are calculated
for every game played, the Offense Ratio and Attack

Ratio. Offense ratio is the amount of time that the
ball was on the opponent’s half, against being on our
own half. The Attack ratio is the number of times the
team attempted to shoot at the goal, against that of
the opponents. We could calculate the same ratios for
all our logged games as well. Important references
are Ros and Veloso (2006) and Browning and Veloso
(2005), Riley and Veloso (2002), Han and Veloso (2000)
and Erdogan and Veloso (2010).

10.6. Papers on DQN, DRQN and LSTM

For the following topics, include some papers and
references:

1. Hierarchical Learning. Especially with the Game
State Transition Diagram

2. DQN and A3C/A2C and newer approaches
3. DDQN, NAF, CEM, DDDQN and PPO
4. Print tutorial on DQN and find papers
5. LSTM and GRU
6. Residual Networks
7. Monte Carlo Tree Search

10.6.1 Hausknecht2015 - Deep Recurrent Q-
Learning for Partially Observable MDPs
[40]

This paper is a further study on the Atari games. It
compares using stacked input frames in a Convnet
against using an LSTM in the last layer. It concludes
that with many Atari games, stacking the last 4 frames,
a POMDP becomes an MDP. Adding an LSTM in the
last layer turns a DQN into an DRQN and has similar
performance, but seems more robust. This approach
uses a target network to stabilize predictions of the Q
Value and actually is the precursor to the later Dueling
and Double dueling networks that we are using. This
work also uses visualization techniques like we used in
the Classification of MSL robots version. We will use
the same techniques in our work on Explicit Opponent
Modeling.

10.6.2 Hasselt1509 - DDQN Deep Reinforcement
Learning with Double Q-Learning (8) [101]

The Double Q-Learning approach is an modification of
DQN, to handle the generally large overestimation of
Q-values that DQN suffers from for several domains.
It solves this problem by splitting the output of the
last convolutional layer into two separate streams, one
for the value and another one for the policy. The more
actions a domain has, the larger the overestimation

41



Learning MSL Team Behavior 8.2 - Aug 2019

will be. There are actually two networks, a main net-
work, that learns the functions and a target network,
that is updated at a lower frequency than the main net-
work. The main network is used to learn the action (or
policy), while the target network is used to learn the
value. By decoupling both networks, they will have
different error rates and will therefore compensate the
overestimation.

10.6.3 Osband1602 - Deep Exploration via Boot-
strapped DQN - (8) - [74]

This paper describes Bootstrapped DQN, an exten-
sion to standard DQN and also applicable to DDQN,
which leads to faster learning and more generalizing
function exploration. It uses a number of so-called
heads, included in the network, directly after the con-
volutional layers, that evaluate multiple strategies in
parallel. This allows the network perform deep explo-
ration and finds better strategies more quickly. The
paper explores other approaches like Thompson DQN
and Ensemble DQN. It also mentions other exploration
algorithms like PSRL and RLSVL.

10.6.4 Gu1603 - NAF Continuous Deep Q-Learning
with Model-based Acceleration (8) [35]

Most Q-Learning methods learn actions or policies
as classifications. That is fine for actions like mov-
ing forward, backward or sideways. But for functions
like kicking the ball, we need a more refined direc-
tion, preferably in degrees and additionally a power
component as well. Continuous actions are more diffi-
cult to learn, given its potentially large action space,
which introduces large uncertainties. Deep Determin-
istic Policy Gradients (DDPG) is able to learn continu-
ous, parameterized action spaces, but are complicated.
Normalized Advantage Functions (NAF) is a much
simpler approach with comparable results and also
learns faster. Although this is a model-free approach,
it proposes to build an internal model to facilitate the
fast generation of experience-replay examples. In our
case that will not be necessary, because we will not be
employing exploration and therefore have no experi-
ence replay buffer. The examples from the log files are
sufficient and actually take over the function of such
a model. This approach uses a single network that
outputs both the policy and the value. The approach
is related to Dueling networks (Wang1511) Like other
networks, the value that is learned is the advantage,
which is an indication of how good it is to be in a
particular state. This function is normalized during

training to get a gradient, that can be scaled back to a
paramterized value and serves as the Q-Value.

10.6.5 Szita2006 - CEM Learning Tetris Using The
Noisy Cross-Entropy Method (5) [96]

All neural networks use an optimizer, to take the loss
of each sample and transform that in a value that is
used in the back propagation step. Together with the
learning rate, this determines not only the speed of
learning, but also the amount of overshoot that can
occur during training. We are using the ADAM op-
timizer in most cases, but there are more optimizing
strategies. Cross-Entropy is also a popular optimizer.
The Noisy Cross Entropy Method, described in this
paper claims to be an order or magnitude faster than
the standard Cross Entropy Method and we will ex-
periment with it.

10.6.6 Wang1511 - DDDQN Dueling Network
Architectures for Deep Reinforcement (8)
Learning [114]

DQN and the later Double DQN use two networks, a
main network and a target network to learn the Value
and Advantage functions. In this approach a single
network splits its output stream into a separate Value
and Advantage stream and uses a function to com-
bine both into a Q-Value with a state-action pair. The
approach is model-free and off-policy. The function
that combines the Advantage and Value back into a Q-
Value requires good considerations, that are explained
well in this paper. The approach described here, can
also be applied to the Double Q-Learning Network,
resulting is a simpler and more reliable model.

10.6.7 Schulman1707 - PPO Proximal Policy Opti-
mization Algorithms (8) [87]

This paper proposes a new method to calculate Pol-
icy Gradients, which are used in networks that learn
policies in continuous domains. We have already seen
DDPG and NAF, but in this work PPO is compared
to Trust Region Policy Optimization (TRPO) CEM
(Szita2006) and A2C/A3C. It is a replacement for stan-
dard Policy Gradient Algorithms in other approaches
and are simpler to implement. It could be interest-
ing for our approach to a continuous parameterized
application.

42



Learning MSL Team Behavior 8.2 - Aug 2019

10.6.8 Wu2019 - A Comprehensive and Survey on
Graph and Neural and Networks [116]

Almost all work on recognizing patterns and geomet-
ric trajectories is based on Concolutional Neural Net-
works. Although we have detailed positional data
about X,Y,Z positions and accelerations, this data is
converted into a grid-like image and then fed into a
neural network. The questions is if there does not ex-
ist a type of network that is using the positional data
directlu to learn to recognize shapes or trajectories.

This work is exactly that. and is a survey on so-
called Graph Neural Networks. This study gives an
overview and categorizes the various Graph Network
approaches as Convolutional Graph Networks, Recur-
rent Graph Networks and AutoEncoder Graph Net-
works, so basically the same as existing Neural Net-
works but then applied to graphs.

The curious thing to the entire enterprise however,
is the representation of graphs as input to the Neural
Network. Instead of a Graph representation, the struc-
tures are converted to adjacent cells in a grid, resulting
in images, just as we were already using. The conclu-
sion is that at this time there does not seem to exist a
direct analog representation to graphs or trajectories
to be used in Neural Network. So an image or grid
representation is still the dominant technology.

10.6.9 Schaul2016 - Prioritized Experience Replay

Paper is read and annotated but must still be included
here.

10.7. Recurrent Networks

10.7.1 Arulkumaran2019 - AlphaStar: An Evolu-
tionary Computation Perspective [6]

(Copy of the abstract) AlphaStar draws on many areas
of AI research, including deep learning, reinforcement
learning, game theory, and evolutionary computation
(EC). In this paper we analyze AlphaStar primarily
through the lens of EC, presenting a new look at the
system and relating it to many concepts in the field.
We highlight some of its most interesting aspects—the
use of Lamarckian evolution, competitive co-evolution,
and quality diversity. In doing so, we hope to provide
a bridge between the wider EC community and one
of the most significant AI systems developed in recent
times.

10.7.2 Karpathy2015 - The Unreasonable Effective-
ness of Recurrent Neural Networks [49]

In this excellent blogpost examples are given of the
application of a Recurrent Neural Network (RNN) that
analyses single-character documents and draws con-
clusions from this, using a simple network. The RNN
has a hidden internal state, that is communicated to
each time-step and is therefore capable of learning the
probability of certain actions occurring after earlier
actions. In order to do this, the network has one or
more Lon Short-Term Memory (LSTM) cells, that do
the actual learning of the sequences. It uses Stochastic
Gradient Descent (SGD) and an optimizer like RM-
SProp or Adam.

Many examples are mentioned, like Video Classi-
fication,Image Captioning and Question-Answering.
The first applications were DeepMind’s Neural Turing
Machines. A very promising approach are Attention
Networks, that are now becoming State-of-the-Art.

10.7.3 Olah2015 - Understanding LSTM Networks
[73]

Long Short-Term Memory networks allow a Recurrent
Neural Network (RNN) to learn long-term dependen-
cies in time series. They were introduced by Hochreiter
and Schmidhuber (1997). This blogpost explains how
they work. The important ingredient are the so-called
gates, that control what information is processed by
the cell. An LSTM has three gates; Forget, Input and
Output. Forget determines how much of the previous
time steps is passed through the cell. The Input gate
determines which new information is stored inside the
cell. The Output gate determines how much is sent to
the cell output.

There are many variants to this architecture, like the
peephole connections or combined forget and input
gates. A simpler version of the LSTM is the Gated
Recurrent Unit (GRU) which has a single update gate
and merges the cell state and hidden state. This results
in a simpler and faster cell, that is comparable but
not as flexible, but gaining popularity. Here too the
conclusion is that Attention Networks are the way of
the future.

10.7.4 Culurciello2018 - The fall of RNN / LSTM
[19]

Both previous blogposts are about LSTMs and con-
clude that Attention Networks are the wave of the
future. This one concludes that LSTMs are old hat

43



Learning MSL Team Behavior 8.2 - Aug 2019

and that the only way forward is with Attention Net-
works. The technology is used in Siri, Cortana, Google
Assistant and Alexa, so it is used heavily in Natural
Language Processing (NLP). One reason that LSTMs
became popular is because it solved the so-called Van-
ishing Gradients Problem, which occurs when very
small weights are added to many layers of a neural
network. The Stochastic Gradient Descent successively
performs dot-product calculations, which often result
in weights that become so small, that they get closer
to zero with every iteration.

However LSTMs model dependencies on the pre-
ceding steps only and therefore cannot deal with de-
pendencies that are farther away in the event chain.
For instance it cannot learn to deal with a question
mark at the end of a sentence. This can be done with
techniques like Conditional Random Fields, but these
are not commonly integrated with Recurrent Neural
Networks. So in this post the Transformer is featured
as a better approach, based on Attention Modules. An
even newer approach based on Causal Convolutions
outperforms even these Attention Modules. It also
refers to a novel approach called Temporal Convolu-
tional Networks (TCN).

The remainder of this post explains Hierarchical
Neural Attention Encoders, based on the Attention
Module and is similar to a Neural Turing Machine.

10.8. Symbolic Processing

10.8.1 Sales1994- An Approach to Solving the Sym-
bol Grounding Problem: Neural Networks
for Object Naming and Retrieval [83]

10.8.2 Harnad1993 - Grounding Symbols in the
Analog World with Neural Nets [38]

10.8.3 Zhang1707 - Learning like humans with
Deep and Symbolic Networks [122]

We introduce the Deep Symbolic Network (DSN)
model, which aims at becoming the white-box ver-
sion of Deep Neural Networks (DNN). Symbols are
connected by links, representing the composition, cor-
relation, causality, or other relationships between them,
forming a deep, hierarchical symbolic network struc-
ture. The symbols and the links between them are
transparent to us, and thus we will know what it has
learned or not - which is the key for the security of
an AI system. The Deep Symbolic Networks (DSN)
model aims at solving the drawback of Deep learn-
ing that the obtained models remain black-boxes[3].
Suppose we have already constructed a deep symbolic

network as in model with all symbols equipped with
their identifying operators. One notices immediately
the composition links between the symbols, emerging
from the relationships between them. Links by causal-
ity, Links by abstraction, Higher order links, Links can
also be represented by symbols. Identifying operators,
using MNIST as an example. In this conceptual paper,
we have introduced a Deep Symbolic Networks (DSN)
model, which is inspired by DNN and also comes out
from observing the real world - it models the deep,
hierarchical structure of the world, with the obser-
vations that humans symbolize physical matter, and
that singularities isolate symbols and create symbol
dictionary naturally for us.

10.8.4 Hohenecker1808 - Ontology Reasoning with
Deep Neural Networks [43]

Traditionally, symbolic logic-based methods from the
field of knowledge representation and reasoning have
been used to equip agents with capabilities that resem-
ble human logical reasoning qualities. In this paper,
we employ state-of-the-art methods for training deep
neural networks to devise a novel model that is able
to learn how to effectively perform logical reasoning
in the form of basic ontology reasoning. We derive a
novel approach for creating models that are able to
learn to reason effectively in a great variety of different
scenarios. Interestingly, however, it can be observed
that, under certain provisions, even the best reasoning
models based on machine learning are still not in a
position to compete with their symbolic counterparts.
We develop a novel model architecture, called (RRN),
which makes use of recent advances in the area of deep
neural networks (Bengio, 2009). Most of the KRR for-
malisms that are used for reasoning today are rooted in
symbolic logic, and thus, as mentioned above, employ
mathematical proof theory to answer queries about
a given problem. Machine learning models are often
highly scalable, more resistant to disturbances in the
data, and capable of providing predictions even if the
formal effort fails. The facts that define such a knowl-
edge graph are usually stated in terms of triples of the
form subject, predicate, object and specify either a re-
lation between two individuals and or an individual’s
subject object membership of a class, in which case
refers to an individual, to a special subject predicate
membership relation, and object to a class. First it gen-
erates vector representations, so-called embeddings,
for all individuals that appear in the considered data,
and second, it computes predictions for queries solely
based on these generated vectors. RRNs are based

44



Learning MSL Team Behavior 8.2 - Aug 2019

on the idea that we can encode all the information
that we have about an individual, both specified and
inferable, in its embedding. The results presented in
this work show that the RRN model is able to learn to
effectively reason over diverse ontological knowledge
bases, and, in doing so, is the first one to achieve an
accuracy that comes very close to the yet unattainable
accuracy of symbolic methods, while being distinctly
more robust. The RRN is among the very first deep-
learning-based approaches to comprehensive ontology
reasoning, which is why it is hard to compare to the
state-of-the-art of machine learning models for reason-
ing, whose architectures do not allow for performing
the same kind of inferences.

10.8.5 Garcez1905 - Neural-Symbolic Computing:
An Effective Methodology for Principled In-
tegration of Machine Learning and Reason-
ing [24]

Neural-symbolic computing aims at integrating, as
foreseen by Valiant, two most fundamental cognitive
abilities: the ability to learn from the environment,
and the ability to reason from what has been learned.
We illustrate the effectiveness of the approach by out-
lining the main characteristics of the methodology:
principled integration of neural learning with sym-
bolic knowledge representation and reasoning allow-
ing for the construction of explainable AI systems.
Neural learning and inference under uncertainty may
address the brittleness of symbolic systems On the
other hand, symbolism provides additional knowl-
edge for learning which may e.g. ameliorate neu-
ral network’s well-known catastrophic forgetting or
difficulty with extrapolating. The Knowledge-Based
Artificial Neural Network (KBANN) [49] and the Con-
nectionist inductive learning and logic programming
(CILP) [17] systems were some of the most influen-
tial models that combine logical reasoning and neural
learning. Knowledge representation is the cornerstone
of a neural-symbolic system that provides a mapping
mechanism between symbolism and connectionism,
where logical calculus can be carried out exactly or
approximately by a neural network. This way, given
a trained neural network, symbolic knowledge can
be extracted for explaining and reasoning purposes.
The representation approaches can be categorised into
three main groups: rule-based, formula-based and em-
bedding. Rule-based Representation, Formula-based
Representation, Tensorisation is a class of approaches
that embeds first-order logic symbols such as con-
stants, facts and rules into real-valued tensors. Nor-

mally, constants are represented as one-hot vectors
(first order tensor). Predicates and functions are matri-
ces (second-order tensor) or higher-order tensors. Var-
ious attempts have been made to perform reasoning
within neural networks, both model-based and theo-
rem proving approaches. In neural-symbolic integra-
tion the main focus is the integration of reasoning and
learning, so that a model-based approach is preferred.
Forward chaining and backward chaining are two pop-
ular inference techniques for logic programs and other
logical systems. In the case of neural-symbolic systems
forward and backward chainings are both in general
implemented by feedforward inference. In early work,
the demand for solving “black-box” issues of neural
networks has motivated a number of rules extraction
methods. Most of them are discussed in the surveys
[1, 24, 55]. These attempts were to search for logic
rules from a trained network based on four criteria: (a)
accuracy, (b) fidelity, (c) consistency and (d) compre-
hensibility [1]. In this paper, we highlighted the key
ideas and principles of neural-symbolic computing.
In order to do so, we illustrated the main method-
ological approaches which allow for the integration of
effective neural learning with sound symbolic-based,
knowledge representation and reasoning methods.

10.8.6 Liao2017 - Object-Oriented Deep Learning
[59]

This research that aims at converting neural networks,
a class of distributed, connectionist, sub-symbolic mod-
els into a symbolic level with the ultimate goal of
achieving AI interpretability. wW would like to see
to what extent we can convert neural networks, sub-
symbolic models, into a symbolic level. In our frame-
work, we aim at making progress on explicitly repre-
senting all such symbolic concepts, leading to what
we call “object-oriented” deep learning (OODL) How
to learn disentangled representations from data using
distributed code is however a challenging task. Varia-
tional Auto-encoder [1] can do it to some extent, but
cannot so far scale to real-world tasks. We call these
approaches “neural disentanglement”. When an object
is detected, its properties (e.g., pose, size, position) are
predicted at the same time. Same things happen in ev-
ery intermediate layer of the network, so that one has
full knowledge of the properties of any detected object
and its parts, recursively throughout all layers The in-
put to a general OO layer is a (1-D) list of objects, their
“signatures” and their properties. A “signature” is a
(learned) vector that identifies the object and is invari-
ant to the properties. The properties include features

45



Learning MSL Team Behavior 8.2 - Aug 2019

that are useful for performing intelligent tasks. They
include but are not limited to positions (x,y), poses
(scale, rotation, etc.), “objectness” (probability of being
an object) pointers to its parts (for feature binding),
and physical states (e.g., volume, mass, velocity, accel-
eration, etc.). So far we have experimented positions,
poses and objectness (and part-whole relationships in
some experiments). The output of the general OO
layer is another 1-D list of objects and their properties.
A Predicting/Voting OO Layer, A Binding OO Layer.
We tried our model on the standard CIFAR-10 dataset.

10.8.7 Mao2019 - The Neuro-Symbolic Concept
Learner: Interpreting Scenes, Words and
Sentences From Natural Supervision [?]

Our model learns by simply looking at images and
reading paired questions and answers. Our model
builds an object-based scene representation and trans-
lates sentences into executable, symbolic programs.
NS-CL has three modules: a neural-based perception
module that extracts object-level representations from
the scene, a visually-grounded semantic parser for
translating questions into executable programs, and
a symbolic program executor that reads out the per-
ceptual representation of objects, classifies their at-
tributes/relations, and executes the program to obtain
an answer. Visual perception, Concept quantization,
DSL and semantic parsing, Quasi-symbolic program
execution. Optimization objective, Curriculum visual
concept learning. We presented a method that jointly
learns visual concepts, words, and semantic parsing
of sentences from natural supervision. The proposed
framework, NS-CL, learns by looking at images and
reading paired questions and answers, without any ex-
plicit supervision such as class labels for objects. Our
model learns visual concepts with remarkable accu-
racy. Based upon the learned concepts, our model
achieves good results on question answering, and
more importantly, generalizes well to new visual com-
positions, new visual concepts, and new domain spe-
cific languages.

10.8.8 Garnelo2019 - Reconciling deep learning
with symbolic artificial intelligence: repre-
senting objects and relations [32]

A ‘vanilla’ autoencoder is liable to produce entangled
representations (Figure 1b top). But a variational au-
toencoder with a suitably tuned loss function will gen-
erate disentangled representations. In a vanilla autoen-
coder, each variable in the latent representation is a

single number, while in a variational autoencoder each
variable is represented by its mean and its variance. A
deep neural network capable of learning a mapping
from its input data to a multi-object disentangled rep-
resentation would be a significant step towards a deep
learning system that acquires and uses grounded sym-
bolic representations, with all the potential advantages
that entails. It was subsequently shown that an archi-
tecture based on relation networks could be success-
fully applied to certain analogical reasoning tasks [39].
A related means of discovering and using relational
information is a so-called self-attention mechanism
[5]. One way to understand self-attention (which has
little to do with attention in the conventional sense)
is by comparison to relation networks [41]. We have
focused on the question of how a deep network can
learn to acquire and use compositional representations
whose elements are objects and relations. These are
key features of symbolic representations, and the work
discussed exemplifies what can be achieved today. But
we are still a long way from a satisfying synthesis. Sim-
ulation, in the sense of using a model to predict how
states unfold over time, is one form of such processing,
and a number of recent works describe deep neural
networks that carry out such simulations [46,47]

10.8.9 Bennetot1909 - Towards Explainable Neural-
Symbolic Visual Reasoning [9]

As opaque machine learning models are increasingly
being employed to make important predictions in crit-
ical environments, the danger is to create and use
decisions that are not justifiable or legitimate. Inter-
pretability is the degree to which an observer can
understand the cause of a decision. A last option to
achieve an explanation of the model decision would
be to directly populate the KB from the data. This
would allow to provide an explanation in natural lan-
guage directly from the black box, emphasizing in the
meantime the model’s reasoning errors and highlight-
ing possible bias in the dataset or model. We propose
creating the reasoning-facilitating KB by performing
word-embedding on the black box model labels in or-
der to determine which words are particularly exposed
to a risk of errors due to learning priors or biased data
collection. Interchangeable words are more likely to
be victims of overuse of context [Zhao et al., 2017].
The use of a symbolic basis with a neural network can
provide explanations close to the functioning of hu-
man reasoning while maintaining the state-of-the-art
performance at the same time. As the user or expert
external knowledge does not interfere the predictions

46



Learning MSL Team Behavior 8.2 - Aug 2019

in the explanation process, it constitutes a truly ex-
plainable model that is faithful to communicate the
reasoning behind its output decisions.

10.8.10 Garnelo1609a - Towards Deep Symbolic Re-
inforcement Learning [?]

In this paper, we propose an end-to-end reinforcement
learning architecture comprising a neural back end
and a symbolic front end with the potential to over-
come each of these shortcomings. They inherit from
deep learning the need for very large training sets,
which entails that they learn very slowly. They are
strictly reactive, meaning that they do not use high-
level processes such as planning, causal reasoning,
or analogical reasoning to fully exploit the statistical
regularities present in the training data. We propose
a novel reinforcement learning architecture that ad-
dresses all of these issues at once in a principled way
by combining neural network learning with aspects of
classical symbolic AI. The use of language-like propo-
sitional representations to encode knowledge is an
important aspect. A major obstacle here is the symbol
grounding problem [18, 19]. Hand-crafted represen-
tations cannot capture the rich statistics of real world
perceptual data. The hybrid neural symbolic reinforce-
ment learning architecture we propose relies on a deep
learning solution to the symbol grounding problem. It
comprises a deep neural network back end, whose job
is to transform raw perceptual data into a symbolic rep-
resentation, which is fed to a symbolic front end whose
task is action selection. The neural back end must learn
a compositionally-structured compressed representa-
tion of the raw perceptual data, while the symbolic
front end must learn a mapping from the resulting
symbolic representation to actions that maximise ex-
pected reward over time. Conceptual abstraction, Com-
positional structure, Common sense priors, Causal rea-
soning. Low-level symbol generation, Object detection
and characterisation, Representation building, Spatial
proximity, Type transitions, Neighbourhood, Symbolic
interactions and dynamics. We have proposed a hybrid
neural-symbolic, end-to-end reinforcement learning
architecture, and claimed that it addresses a number of
drawbacks inherent in the current generation of DRL
systems. Moreover, even though the system is only a
preliminary proof-of-concept with many limitations
(to be discussed shortly), it dramatically outperforms
DQN on the most difficult game variant.

10.8.11 Rabinowitz2018 - Machine Theory of Mind
- [?]

This article describes an approach to implement a
system to learn desires, beliefs and intentions based
on observations of sequences of actions. It is also an
attempt to make neural networks more explainable.
The goal is to make agent human-interpret-able. They
construct an observer, who in each episode gets access
to a set of behavioral traces of an agent. In this way it
finds similarities in behavior between different agents.
The system learns to infer the goals of agents. ToMnet
consists of three modules: a character net, a mental
state net, and a prediction net. The character net
parses past episode trajectories, to find out specific
actions agents take. The mental state network reasons
about the agent during the current episode (i.e. infer
its mental state. By learning the agent’s policy, it
finds out the agent’s goal by observing the rewards
given. If the agent sought the closest object in a past
episode, then the ToMnet was more cautious about
whether it would seek the same object again on a
new episode. They also note that: hand-crafting a
Machine Theory of Mind to parse behaviour based
on our human knowledge (e.g. Baker et al., 2011;
Nakahashi et al., 2016; Baker et al., 2017; Lake et al.,
2017) becomes increasingly intractable. Therefore they
learn it with ML, but their examples are form simple
grid-world experiments only. The networks are LSTM
Q-Learning networks.

10.9. Attention Models

In this section we investigate Hierarchical Systems, the
concept of Attention in Neural Networks and Symbolic
Processing. We are looking for a way to combine
Neural Networks with reasoning mechanisms like we
had in Expert Systems as in Good Old Fashioned
AI (GOFAI). The Attention Mechanism is especially
interesting, since it directs a system’s efforts towards
information that is semantically or logically related to
its inputs.

10.9.1 Marcus2017 - Deep Learning: A Critical Ap-
praisal [64]

Current Deep Learning networks suffer from a num-
ber of fundamental problems, as I have argued before.
In search for a way to combine the Symbol Level as
used in GOFAI and Expert Systems, and Deep Neural
Networks, this article sums up these problems and
shows ways in which these might be handled in the

47



Learning MSL Team Behavior 8.2 - Aug 2019

future. This work on recognizing opponent team be-
havior is one attempt at this as well. The following
problems are identified:

1. Deep Learning is going to meet a wall. Chol-
let (2017), Marcus (2012) and Hinton and Sabour
(2017) are hinting at this. Deep Learning is not a
general solution to AI.

2. DL is very data hungry. We need large numbers of
examples to learn. They are not capable of using
simple logical inferences as input to learn things
that are obvious to us, nor can they generalize
beyond the given examples.

3. Transfer Learning is almost impossible. Current
models can only transfer features that are similar
enough, but may still lead to absurd errors, like
recognizing a traffic sign as a weapon.

4. DL vannot represent hierarchical structures. Only
adjacency (like in sequences) and positional shift
(like in convolutions) can be handled. drawing
inferences about intention or causality are beyond
current technology. Tehy only work with correla-
tion.

5. DL is a ’Black Box’ and cannot explain its reason-
ing. We need to devise ’White Box’ system that
contain explanation facilities, like Expert Systems
used to have. They work on the basis of labeled
examples, but have no way of grounding these
labels.

6. When something changes in the outside world,
new concepts are needed or structural changes
occur, the training must be done from scratch.
Learned layers become unusable. Learning new
examples even causes older training to be forgot-
ten.

7. There is too much hype and it is not clear to poten-
tial users, where the limits are. Many examples
suggest that many more types of problems can be
solved, which is not true. Only classification prob-
lems in an unchanging world can be handled very
well. For the remaining problems we need dif-
ferent solutions, that are not yet available. Pieter
Thiel’s remark: "We wanted flying cars, instead
we got 140 characters."

8. We need to concentrate on Unsupervised Learn-
ing, where new classes and categorization is done
automatically, while solving the Grounding Prob-
lem. Action Sequences might be a good example
for this, since the relationship between actions
and images can be made explicit. This ties in with
Symbol manipulation. Action symbols must be
grounded in our world and should correspond

to the tokens, used by an AI system. This is at-
tempted in systems like NeuroSymbolic Modeling
and Neural Programming. Embodied AI is an-
other topic that might be fruitful. So we need
a way to combine Reasoning with Concepts and
Neural Inferencing.

10.9.2 Qianli2017 - Object-Oriented Deep Learn-
ing [58]

In this work a new approach to working with symbols
is introduces. Instead of using Tensors and Convolu-
tions, object structures are used as the basic building
blocks. In each layer a number of objects is described
with properties. So instead of concentrating on fea-
tures in a convolutional network, here objects and their
properties are used to build layers of increasing gener-
alization. On the lowest level random target points are
selected, called Voting, to mimic convolutions and to
create the first level primitive objects. Each object has
a coordinate and orientation along with other proper-
ties. In higher layers objects are grouped into larger
objects, called Binding to form grounded symbols.
Other than convolutions, here the position and orien-
tation is maintained, related to the original picture,
creating a hierarchy of generalized objects.

With this method, objects have feature bindings,
property associations and signal groupings. These
properties relate to the object and not to features or
sub-symbolic parts in a layer of a convolutional neu-
ral network. The resulting Object Oriented network
differs from a Feature Oriented network, in that is
maintains a direct relationship with the object and its
location in the image.

This approach realizes a disentangled representation
of objects in an image, which is very hard to do in
Convolutional Neural Network. Currently this is also
done by Variational Auto-Encoders, but they do not
scale to real-world problems. The Object Oriented
approach is a better candidate for such problems.

10.9.3 ICLR2018 - Composable Planning with At-
tributes [44]

In this work actions of an agent are decomposed into
high-level abstractions of a task into elements, called
Attributes. Each action is analyzed according to the
effect it has on the environment. Recording these
cause and effect relationships in Attributes makes it
possible, to learn a path to a solution, comparable to a
reasoning chain in situation-action pairs.

48



Learning MSL Team Behavior 8.2 - Aug 2019

10.9.4 Garnelo1609 - Towards Deep Symbolic Rein-
forcement Learning

10.9.5 Zhang1707 - Learning like humans

10.9.6 Liao2018 - Symbolic Reasoning (Symbolic
AI) and Machine Learning [57]

10.9.7 Vaswani1706 - Attention Is All You Need
[106] (9)

With this paper started the idea of Attention. It in-
troduces the Encoder and Decoder architecture, later
integrated into the Transformer. It is an approach to
sequence modeling, also known as Seq2Seq models.
Developed mainly to overcome problems in Natural
Language Processing (NLP) it concentrated on finding
long-distance dependencies in pieces of text. Existing
LSTM models worked well on near-distance depen-
dencies only. Longer distances resulted in increased
memory usage and longer processing times. With a
Query mechanism that accesses key-value pairs that
learn dependencies, a much better mechanism was
achieved. The tow main concepts are self-attention
and multi-headed attention. Self-attention finds de-
pendencies within the same sentence. multi-headed
dependencies look for relationships with longer dis-
tances in other sentences or more distant parts of a
text. Whereas linear models or convolutional models
look for mappings between inputs and given labels,
attention learns mappings between dependencies and
is much less data-hungry. Instead of using a RNN,
this approach uses standard feed-forward networks
to learn mappings between dependencies and could
work equally well on strings as pictures.

10.9.8 Brownlee2017 - How Does Attention Work
in Encoder-Decoder Recurrent Neural Net-
works [63]

10.9.9 MachineTalk2019 - Create The Transformer
With Tensorflow 2.0 [2]

10.9.10 Rubik2019 - Introduction to Transformers
Architecture [3]

10.9.11 DeepMind2019 - Learning explanatory
rules from noisy data [22]

10.9.12 SkyMind2018Symb - Symbolic Reasoning
(Symbolic AI) and Machine Learning [1]

10.9.13 Vinayavekhin1806 - Learning and Under-
standing using Attention, Focusing on
What is Relevant: Time-Series [110]

10.9.14 Galassi1902 - Attention please! A Critical
Review of Neural Attention Models in and
Natural Language and Processing [31]

This review article concentrates on the recent devel-
opments of Neural Attention Models, specifically de-
signed for Natural Language Processing (NLP).

It presents a generalized model for such networks
and emphasizes the ability of these networks to offer
explanations of what is going on inside neural net-
works. For text applications it shows a visualization
tool, something similar could be created for image
processing. It also offers two references to time-series
analysis (Tran2018, Song2018) which we should follow
up.

The most important part of the approach is the
Attention Function, which learns a probability distri-
bution over all its inputs over time. Other than with
LSTM there can be multiple and distant dependencies.
In many cases, the input consists of a bi-directional
RNN and the output is another RNN. An important
example application is RNNsearch (Bahdanau2015).
The paper offers a unified Attention Model, which is
based on the work of Daniluk2017 and Vaswani2017.

Figure 19: Unified Attention Model.

In some other approaches, the input consists of con-
textual information, extended with background knowl-

49



Learning MSL Team Behavior 8.2 - Aug 2019

edge. In Hierarchical Attention Models this model
is extended to mutpile layers, where the Attention
Function is often combined with a RNN, a GRU or a
CNN. A Hierarchical that analyzes an input sequence
and transforms it into an output sequence is called a
sequence-to-sequence annotator.

A very interesting approach is to combine an At-
tention Model with Knowledge. According to LeCun,
Bnegio and Hinto (2015) this allows for a combination
of sub-symbolic models with symbolic knowledge and
may serve as a basis for explaining what a neural
network learns. It is also proposed as a new way to
allow neural networks to perform complex reasoning
tasks. Neural Symbolic Learning is described in Garce,
Broda and Gabbay (2012).

Figure 20: Hierarchical Attention Model.

10.9.15 Skymind2019 - A Beginner’s Guide to
Attention Mechanisms and Memory Net-
works [115]

Attention Mechanisms are currently state-of-the-art
in Natural Language Processing (NLP). Convolutions
take a moving window over an input image and finds
features in the image that assist in recognizing objects
in the image. With NLP, but also with analysis of
time series, the determining features are hidden in the
differences between succeeding time steps or words in
the input. For this a Recurrent Neural Network (RNN)
is used, in which a Long Short-Term Memory (LSTM)
cell is learning the dependencies between successive
steps. However this approach puts an emphasis on
events being close together, distant influences cannot
be represented by such a network.

An Attention Mechanism makes a table of two
events (or sentences) and puts the elements in the
rows and columns, like in a confusion matrix. It
then learns the relationships between all elements of
this table, which makes it find relevant properties of
both structures. It finds the strongest relationships
between these events and this results in an Attention
Unit. These units can be stacked, to form Encoders.

Several Encoders together form a Transformer, that
results in a smarter representation of the input data.

The most common architecture of a transformer has
a Key-Value pair as input See Figure 19. It also has a
query as input, that searches over all Keys and finds
the values or different associations of that Key and
then returns a vector with the most probable meaning
of this particular word or event.

10.9.16 Yang2008 - Hierarchical Attention Net-
works for Document Classification [119]

This paper also concentrates on assigning labels to text.
It introduces Hierarchical Attention Networks (HAN)
in which for instance one level learns the association
between words, while the second learns information
about an entire document. Although most papers
concentrate on NLP, the same methods can be applied
to the analysis of time series. Here a structure is
described of a Word Sequence Encoder, connected to
a word-level attention layer and a Sentence Encoder
with a sentence-level attention layer.

Instead of an LSTM, most Attention Mechanisms
are using the simpler Gated Recurrent Unit (GRU). A
GRU has two gates; a reset gate and an update gate.
The update gate decides how much information is
kept and how much new information is added. This
work uses a bi-directional GRU (Bahdanau2014). It
uses a single layer Multi Layer Perceptron (MLP) to
learn the importance of the input. The HAN is com-
pared to other methods like SVM, LSTM, CNN, GRNN
and concludes that HAN is more powerful than all of
them. Another important feature is that a visualiza-
tion technique is used to show the relevance of words
as part of a piece of text.

10.9.17 Steels2005 - The Symbol Grounding Prob-
lem has been solved. So what’s next [91]

As we are looking for ways to let an Opponent model
find intentions of individual players as explanations
of their behavior, we must connect these behaviors to
symbols. grounded in the robotic soccer-playing world.
This is a symbol-grounding problem and as such this
article is very relevant. Luc Steels has been working
on language acquisition by robots for many years, and
this essay is the result on a workshop on the Symbol
Grounding Problem. It is a defense against the claims
of Searle in his Chinese Room experiment, in which
he claims that symbol grounding is only possible in
embodied organisms and is the result of an unknown
biochemical or quantum process. This essay shows

50



Learning MSL Team Behavior 8.2 - Aug 2019

that autonomous systems are capable of generating
and communicating their own symbols and ground
them to their physical world. However he makes the
distinction that these symbols are computer symbols
and are not related to the human world. These sym-
bols develop in a semiotic network by trial and error
between agents and when both agents share a suffi-
ciently similar semiotic network, communication is
possible, using grounded symbols. In our case we
would be using the already existing semiotic network
of human soccer players and connect this with the
equivalent symbols in the robotic network, to allow
robots to communicate about human grounded sym-
bols. That allows communication and forms the basis
for explanation facilities of the proposed Opponent
Model.

10.9.18 Dennet1971 - Intentional Systems Theory
[23]

This summary of Dennet’s 1978 theory explains the
differences between first-order and second-order inten-
tional systems. An intentional system has beliefs and
desires that lead to predictable behaviors. A second-
order intentional system has beliefs about beliefs (and
desires) and is capable of reflection. Simple agents like
animals and robots are first-order intentional systems.

In the case of a robot, the actual beliefs and desires
are derived from those of its creators. In our case
taking the intentional stance allows us to talk about
desires, beliefs and actions that are grounded in the
soccer-playing-robot world. This gives the system ex-
planatory power and allows us to communicate with
the agent using the learned model as a semiotic net-
work, shared by the robot and it’s users.

This is a rather philosophical approach that ties
in closely with the work of Steels about grounding
symbols [91].

10.9.19 Chen1711 - Dialogue Act Recognition via
CRF-Attentive Structured Network [15]

This work on Dialog Analysis is performed in the field
of text analysis, part or Natural Language Processing
(NLP). There are a lot of similarities between Dialog
Analysis and recognizing action patterns. In both
fields, the intention of the actor is used to classify
action sequences. In our case these are movements, in
the case of NLP they are utterances. So a hierarchy of
Intentions, Acts and Roles corresponds to many of the
aspects used in NLP.

In this paper a comparison is made with traditional

hand-crafted features, used in Recurrent Neural Net-
works and the approach, called CRF-ASN. A Linear
Chain CRF is input to a number of Hierarchical At-
tentive Encoders, to select the actions that are most
relevant, given the current context. In this way an act
is interpreted as part of an group of actions, within the
context of the dialog, comparable to our Game State.
The problem is a typical sequence labeling task.

The paper contains many implementation details
and references to relevant literatur and achieves an
accuracy of 81.3 to 91.7%, much higher than previous
methods. Attention mechanisms were first proposed
in Bahdanau2015. The Neural Network involved uses
bi-directional GRU’s, described in Bahdanau2014.

10.9.20 Liu2018 - Relational Attention Networks
via Fully-Connected Conditional Random
Fields [62]

10.9.21 Nazerfard2010 - Conditional Random
Fields for Activity Recognition in Smart
Environments [72]

10.10. Formation Analysis

10.10.1 FutsalExpert2018 - 6 Amazing Futsal Forma-
tions And Team Setups (8) [30]

This blogpost provides an overview of 6 Futsal
formations. Although the FIFA, UEFA and KNVB
coaching manuals also show these formations, the
explanation of them are very clear and useful. A
summary: Defensive Formations:

The Pyramid (2-1-1)
2 Defenders, 1 midfielder and 1 attacker form a
defensive lineup in a half-court pressure play. The
midfielder is the link between defense and attack.
He is the third man and the only one supporting the
attacker during a counterattack.
The Wall (3-0-1)
A super defensive strategy, to adopt when things get
hard. It uses 3 defenders and 1 attacker. Useful to
prevent the other team from scoring while protecting
an advantage.
Neutral Formations:

The square (2-0-2)
A balanced formation for less experienced teams with
two defenders and two attackers. Most teams attack
or defend with 3 players. Role switching is needed
when supporting an attacker or defender.
The diamond (1-2-1)

51



Learning MSL Team Behavior 8.2 - Aug 2019

This is the best formation for a team that has a
lot of ball possession.IT uses two midfielders. The
midfielders can be trapped and become isolated form
the defender.
Attack Formations
The Y (1-1-2) If the other team is not so strong and you
are willing to take a risk, this formation puts pressure
on the offence. Is good to gain the ball. Position of the
midfielder is key to support the defender when the
opponent has the ball.
All or Nothing (1-0-3)
This formation is scary. Do not use this formation
for a long time and only when your team is at a
disadvantage and you are at the end of a life-or-death
match.

10.10.2 Power2017 - “Not All Passes Are Created
Equal:” Objectively Measuring the Risk
and Reward of Passes in Soccer from Track-
ing Data. [77]

This paper from STATS describes a system to analyze
passes differently from human annotators. The usual
way is binary, by distinguishing between successful
and failed passes. This paper argues that the suc-
cess of a pass needs to be measured by its risk and
reward. By analyzing two seasons of a professional
soccer league they show how these two factors are be-
ing estimated by a learning system. The best way is to
create dangerous situations by passing the ball to cre-
ate an imbalances between the attack and defense. Taki
and Hasegawa [14] looked to measure the dominant
region of a player in order to model the probability
of a players region intercepting that of the ball. Link
et al., [7] hand crafted a set of features using player
and ball spatial-temporal data; pressure, density, zone
and control to measure the dangerousness of a pass
in the attacking 3rd of the field. Gyramati et al [5]
proposed a “QPass” method to quantify the quality of
a pass As we get closer to the goal, it can be seen that
passing gets riskier with passes in the forward third
being successfully made 58% of the time, and passes
into the penalty area being made 37% of the time. We
utilize the player trajectory data to craft soccer specific
features which we define as Micro Features:

1. Speed of the player in possession and the intended
receiver.

2. Speed of the nearest defender toward the passer
and the receiver.

3. Distance of nearest defender to the passer and
receiver.

4. Nearest defender angle to the passing line.

5. First time pass.

6. Time from regaining possession.

7. Intended receiver.

The expected receiver membership can therefore be
determined as:
Expected Receiver = Distance / Min Distance * Angle
/ Min Angle

Pass reward is estimating the likelihood that the
pass made will result in a shot within the next 10
seconds. We need to capture the tactical features
(i.e., game-state) as well as the formation features
(i.e., team-structure). Three distinct game-states are
used for analysis: i) build-up, ii) counter-attack, iii)
unstructured-play. Analysis is done based on forma-
tions. We employed a formation clustering method
described by Bialkowski et al., [1]. This is important as
we can now capture if a pass is being played between
the lines of midfielders and defenders or if a pass
is attempting to break the final line of defenders. A
defensive block can be split into high-block, medium-
block, and low-block.Because the number of defenders
in front of the ball is higher than our counter attack
example, the skill level required to complete a more
penetrative pass is larger. Additionally, we define a
dangerous pass, which is a pass that is in the top 25th
percentile of passes with the highest reward. The abil-
ity to play the critical pass that unlocks a defense is
one of the most highly sought after skills in soccer. By
assessing the reward of each pass during a play, we can
objectively assess who is responsible for changing the
attacking momentum in a possession. By combining
the passing risk and passing reward models we can
now learn a new dictionary of objectively measured
dangerous or critical passes. We also want to be able to
assess the impact the pass will have in creating danger
for the opposition. We therefore define a Dangerous
Pass (DP) as an attempted pass that has a greater than
6% chance of leading to a shot in the next 10 seconds.
The analysis process for a coach is to quickly find pat-
terns a team will use and understand how dangerous
these patterns are. We can immediately see that the
most dangerous passes occur around the edge of the
penalty area. These passes have the highest reward
they are also have the highest risk. In this paper, we
presented an objective method of estimating the risk
and reward of all passes using a supervised learning
approach. Adding contextual features improved the
prediction performance in addition to giving semantic
information to each pass.

52



Learning MSL Team Behavior 8.2 - Aug 2019

10.10.3 Visser2001 - Recognizing Formations in Op-
ponent Teams (7) [111]

This work by the University of Bremen is based on
work of CMU and learns team behavior. References are
made to the work in the Simulation League. In order
to switch between team behaviors, they analyze the
team formations. In addition they analyze defensive
behaviors like man-to-man marking, zone defense and
catching a pass. To learn the different formations, they
interviewed human experts. Based on this they define
an 8x8 grid. This is then fed into a Neural Net, which
classifies the 10 player formations into 16 different
formations. The best performance was 72.27%, based
on 612 input frames and 68 test frames. There is
a reference to a paper on human understanding of
team behaviors (Taylor Raines 2000) and adversarial
learning (Stone and Veloso 1998).

10.10.4 Disney2017 - Computer algorithm automat-
ically recognizes soccer formations and de-
fensive strategies

This TechXPlore.com weblog explains work, done by
Disney in cooperation with CalTech and STATS to rec-
ognize formations and team strategies. The technique
emplyed is imitation learning. The work, this post
is referring to is Coordinated Multi-Agent Imitation
Learning (Le2017 [53]).

10.10.5 Le2017 - Coordinated Multi-Agent Imita-
tion Learning

This recent paper brings together Team Sport Analysis
and RoboCup approaches to infer the roles of play-
ers from sports tracking data. This paper refers to
multi-agent imitation learning as a method to learn a
model of team behavior based on tracking data. This
work, too, emphasizes the importance of establishing
player identities, and their role. In the sports analysis
community this is known as index-free multi-agent
control (Kingston and Egerstedt 2010). They call their
approach a Stochastic Variational Inference approach.

This work realizes index-free policy learning via
role-learning and role-based indexing, learning an effi-
cient policy per role. The experiments are performed
on 45 games of professional soccer in the European
League. The training data consists of 7500 sets of tra-
jectories with a total of 1.3 million frames at 10 Hz. The
average sequence length is 176 steps. They are using
an LSTM trained on overlapping 50-step sequences.
The model is learned via stochastic variational infer-
ence on a continuous HMM. There is a reference to

Generative Adversarial Imitation Learning (Ho2016)
and Structured Stochastic Variational Inference (Hoff-
man2014).

10.10.6 Power2018 - Mythbusting Set-Pieces in Soc-
cer

This paper (coming from Sports Analytics Research)
explains the usefulness of Set-Pieces and begins with a
list of misconceptions about Set-Pieces. The analysis of
the usefulness of Set-Pieces is conducted by comparing
the chance of success of 20 Soccer Team in the UK and
finding out their strategies when taking a corner. The
analysis is done based on hand-crafted features and
then visually represented as heatmaps. In order to
compare the various tactics, a generalized Set-Piece
Grammar is developed, that could be very usefull,
although it is only applicable to taking corners in
11x11 soccer.

The analysis is done by a rule-based system, based
on information retrieved from human experts. As
an example, they did show that an in-swing cross
has a 10.81% chance of a goal, compared to a 6.46%
chance for an out-swing cross. Other factors are how
many defenders are on each goal post. Using the
same method they are able to determine the kind of
defense is emplyed: man-to-man, zonal or a hybrid.
They also concluded that a Neural Network to learn
all approaches based on the hand-crafted features is
a better approach and tested this with a 46x25 picel
input image. Details about the network configuration
are also given. The detection accuracy was 82.53%
based on 1500 input samples. They also note that
many more goals are scored from open play than from
Set-Pieces.

The way that they predict an opponent’s behavior is
through four levels of analysis:

1. Defending strategy (man-to-man, zonal, hybrid).
2. Delivery of Set-Pieces (Short, Long, Flick-On, Lo-

cation), although not clear what they mean with
those.

3. Opponent’s strong and weak points.
4. How is the opponent likely to play against our

team (How do we defend and how will they de-
liver the ball).

To compare opponent strategies they use a tech-
nique called affinity propagation to cluster average
team behavior (ref 12 - Frey and Dueck 2007)

53



Learning MSL Team Behavior 8.2 - Aug 2019

10.10.7 Felsen2018 - Where Will They Go? Predict-
ing Fine-Grained Adversarial Multi-Agent
Motion using Conditional Variational Au-
toEncoders (9) [27]

This is another paper from Sports Analytics by STATS
UK, the same group that is working with Disney. It is
about predicting opponent behavior and uses a num-
ber of AutoEncoders to learn the opponent behavior.
Their method is called Conditional Variational AutoEn-
coder (CVAE) and analyzed 1200 Basketball games,
using position data of players and the ball.

Two important ascpects of this work are: the use of
Context in the analysis, which in this case means in-
formation about the game state and multi-agent align-
ment, which means that in all cases the identity of the
players was normalized to allow comparisons.

They make references to the work of DESIRE (Lee
2017), which used a CVAE RNN Encoder/decoder to
learn team behaviors. Another approach used Social
LSTM’s also using hand-crafted features. Lucey 2013
investigated players roles.

Figure 21: CVAE Encoder/Decoder (Felsen2018).

The Model has three input encoders: The Identity
Encoder, which identifies the player, Context Encoder,
which provides the game situation and the Trajectory
Encoder, which provides the path of the agent. The
CVAE learns the various movements and the decoder
provides the predicted path. There are a number of
complex calculations involved, like Kullback-Leibler
Divergence and the trajectory decoder to minimize
Euclidian distance.

There are implementation details about the used net-
work configurations. The best configuration achieved
a 5.8% error rate on trajectory prediction, where a 1
sec history and role assignment with context and team
identity were used.

10.10.8 Wagenaar2019 - Using Deep and Convolu-
tional Neural and Networks to Predict and
Goal-Scoring Opportunities and in Soccer

This is work done at the University of Groningen and
related to Sports Analysis as well. They use a Convo-

lutional Neural Network to learn self-organizing maps
to identify defensive and offensive patterns in soccer.
They analyzed two different game situations: snap-
shots before goal-scoring and loss of ball-possession
situations. They use a time window of 10 seconds. The
input consists of digitized games from the Bundesliga
teams. They normalized the data so that all games are
played from right to left. GoogLeNet with incpetion is
used in both a pre-trained and a fresh trained version
as well as a simple 3-layer CNN.

The input consists of 6300 images and the best ver-
sion was GoogLeNet trained from scratch with en-
hanced images, which achieved 67.1% accuracy.

10.10.9 Power2016 - Not All Passes Are Created
Equal: Objectively Measuring the Risk and
Reward of Passes in Soccer from Tracking
Data

10.10.10 Le2017a - Data-Driven Ghosting using
Deep Imitation Learning

10.10.11 Zheng2016 - Generating Long-term Trajec-
tories Using Deep Hierarchical Networks

10.10.12 Ruiz2017 - The Leicester City Fairytale?:
Utilizing New Soccer Analytics Tools to
Compare Performance in the 15/16 & 16/17
EPL Seasons

10.11. Action Models

10.11.1 Zhang2019 - A Comprehensive Survey of
Vision-Based Human Action Recognition
Methods [121]

This recent overview of Human Action Recognition
gives a structured summary of all current methods
to analyze video and detect and recognize Human
Actions. This is relevant, because we want to be able to
recognize movements on the field as intentional events,
which of course is a lot simpler but could use the same
or simpler versions of these approaches. All methods
are based on the analysis of time series of data. The
most important aspect of the problem is the selection
of a good feature representation. Traditionally feature
selection was done manually, but advances in Machine
Learning have shown that automated feature learning
leads to much better results. A very popular method
is Spacial Temporal Interest Points (STIP).

The use of depth cameras has stimulated the devel-
opment of depth and skeleton analysis, where human
action feature representation is very important. We
must make a distinction between action detection and

54



Learning MSL Team Behavior 8.2 - Aug 2019

action classification. Action prediction is the next step
after detection and classification. Further research con-
centrates on Action Representation and Interaction
Recognition. Also single person and multiple person
actions are being studied.

For hand-crafted features the methods Boost, Sup-
port Vector Machines (SVM) and Probability Map Mod-
els are mentioned. To represent actions the methods
Motion Energy Image (MEI) and Motion History Im-
age (MHI) are being described. Well-know methods
as SIFT and HOG are being used, but all of these ap-
proaches seem overkill when applied to our simple,
single-point 2D images. Trajectory-based action recog-
nition and the improved Dense Trajectory (IDT) seem
more appropriate for our application. (Wang et al [13]
[113]).

Many more approaches are being discussed here,
but they all concentrate on depth and skeleton ap-
proaches, which are dedicated to Human Action
Recognition. The Human aspect is relevant if we were
to analyze video sequences of humans or humanoids,
playing soccer. With simple, wheeled robots the prob-
lem is confined to the 2D world, represented as single
point trajectories. Interactions with the ball and robots
are the only complicating factor here, and could only
benefit from these studies in a limited way. Several
other articles were found on this subject (see below),
but for the moment they do not seem relevant to our
work.

10.11.2 Ghosh2018 - Deep Learning for Videos: A
2018 Guide to Action Recognition [34]

This very readable blog post gives a good overview
over the developments in Human Action Recognition
over the past 4 years. For all major developments the
most influential papers are summarized along with
their major contributions and the impact that has had
on the state-of-the-art. The final results are described
in more detail in the previous paper (Zhang2019) and
results in a two-stream neural network in which tem-
poral and spatial data is processed separately and
optical flow is processed as a preceding step in the
learning process.

10.11.3 Wang2013 - Action Recognition with Im-
proved Trajectories - [113]

10.11.4 Cheng1501 - Advances in Human Action
Recognition: A Survey [16]

10.11.5 Rahmani1602 - Learning a Deep and Model
for Human and Action and Recognition
from Novel and Viewpoints [78]

10.11.6 Bagautdinov2014 - End-to-End Multi-
Person and Action Localization and
Collective Activity [7]

10.11.7 Kasteren2008 - Accurate Activity Recogni-
tion in a Home Setting [102]

While most research is done on Human Action Recog-
nition, we need to concentrate on a much simpler 2D
domain with single action points and trajectories. This
work, performed at the University of Amsterdam ana-
lyzes human activity in a house, using simple on/off
sensors, placed on doors and spots in rooms. With
these sensors the movements of a single person is
tracked in a house and from this tracking information,
activity patterns are learned like, toileting, washing,
cooking etc.

In order to learn associations between sensor read-
ings and activities two different approaches were
tested; a Hidden Markov Model (HMM) and Con-
ditional Random Fields (CRF). Both performed well
and had only small differences, depending on the way
the sequences were interpreted. So as a result we stud-
ied the differences between the two approaches a bit
in more detail.

The approach, described in this paper is much more
in line with our requirements and so we will further in-
vestigate the application of HMM and CRF techniques
along with a recurrent network, to learn to recognize
and classify robot movement patterns.

10.11.8 Eddy1004 - What is a hidden Markov
model? [26]

A Hidden Markov Model is a method to make proba-
bilistic models if linear sequence data. HMMs are the
standard building blocks for automated sequence anal-
ysis. They are used in speech recognition and many
other domains. In our case we see them used fre-
quently in Reinforcement Learning systems. A HMM
consists of states, state transitions that have a proba-
bility and a set of observations. These observations
are the difference between a Markov Decision Process
(MDP) and a HMM, where the observations are asso-

55



Learning MSL Team Behavior 8.2 - Aug 2019

ciated with the hidden state transitions, that we need
to infer from the observations. To efficiently calculate
the most probable state, the Viterbi algorithm is used.

HMMs assume that there is only a dependence on
the previous state. So in cases where there are multiple
dependencies, a HMM is not appropriate.

10.11.9 Echen2012 - Introduction to Conditional
Random Fields [25]

Conditional Random Fields (CRF) are similar to
HMMs but are more flexible and can handle mul-
tiple dependencies. A CRF that is only depending on
previous labels is called a linear-chain CRF, which is
essentially the same as a HMM.

A CRF defines a number of feature functions that
each return a value. The sum of all these values is
transformed into a probability. In that respect a CRF is
also Logistic Regression and form a log-linear model
for sequential labels. So every HMM is also equivalent
to a CRF. A CRF can model a much richer set of label
distributions.

10.11.10 Ghahramani2001 - An Introduction to Hid-
den Markov Models and Bayesian Net-
works [33]

This review paper is a scientific overview of Hidden
Markov Models, their aspects and in the context of
learning systems.

10.11.11 Wallach2004 - Conditional Random Fields:
An Introduction [112]

This scientific paper explains the way Conditional
Random Fields work in the contect of Part-Of-Speech
(POS) analysis.

10.11.12 Singh2016 - Recognizing Actions in Mo-
tion Trajectories Using Deep Neural Net-
works [90]

This work in the domain of Pretend Play, in which
users let cartoon characters describe trajectories that
must be recognized as actions by other users, is based
on a Deep Convolutional Neural Network (CNN). In-
stead of using a Recurrent Network to recognize ac-
tion sequences, the time domain was converted into
action traces. The program shows an action and a
series of human users are asked to classify the action
pattern. These supervised action patterns form the
ground truth and a standard dataset for this domain
(teh Charades dataset).

The system uses augmentation by flipping, rotating
and shearing the input to create more examples and
prevent overfitting. Details are given about the net-
work architecture. This approach resulted in 99.5%
recognition as opposed to 12.6% with previous at-
tempts. With multiple characters involved at the same
time, the accuracy dropped, partly because the time as-
pect was dropped, partly because processes like follow-
ing and accompanying could not be represented. The
approach is very similar to the work of Klooster2018.

10.12. Team Description Papers

We need to include the TDP’s from teams that have
developed important facilities, related to our intended
system:

1. BrainStormers/Tribots
2. Cambada 2016/17/18
3. CMU 2016/17/18

10.12.1 Hafner2002 - Brainstormers Tribots Team
Description Paper [37]

All software for the Tribots is published and we have a
copy of it which we can study. The research focus is on
Q-learning, then still called Reinforcement Learning.
RL is implemented in a number of Behaviors as part
of a hierarchy of functions. They have used this ap-
proach in SSL, simulation and MSL. It also mentions
the TwoBots, their first humanoid team.

10.12.2 Muller2006 - Making a Robot Learn to Play
Soccer Using Reward and Punishment [70]

10.12.3 Riedmiller2008 - Learning to Dribble on a
Real Robot by Success and Failure [81]

This very short paper describes an early attempt by
the Brainstormers to use Q Learning on a real robot.
The task is to dribble and rewards are given when a
dribble is executed correctly. The criterion for a good
dribble is when a sharp turn is made, while keeping
the ball at a short distance and making progress into
a given direction. The input is the camera image and
the actions are split into X and Y movements. Four
different combinations of action pairs with different
speed vectors are used.

10.12.4 Riedmiller2009 - Reinforcement learning
for robot soccer [80]

This paper concentrates on the application of
Value/Function based Q-learning strategies using a

56



Learning MSL Team Behavior 8.2 - Aug 2019

Neural Network. The approach works on the basis
of time steps in which an agent learns the best ac-
tions in response to the current game state. It is based
on Markov Decision Process (MDP) using a 4-tuple
input M = [S, A, p, c] in which S=State, A=Action,
p=probability and c=cost. Cost is expressed as c(s, a,
s’) denoting the cost of changing state a into state a’
using action a. This work concentrates on optimizing
the long-term cost, not immediate cost. This paper al-
ready shows the contours of later work in batch-mode
Q-learning. It collects a series of experiences and finds
the best Value/Function for an experience. This re-
peated use of experience batches is later also used in
the DeepMind Atari Games approach. It depends on a
world model, which is called a predictive world model
in which it anticipates future actions in an attempt to
overcome time delays in the input. It also features a
hierarchy of models for dribbling, shooting and higher
levels dealing with tactics. So there are a number of
learn-able sub-tasks that can be combined with hand-
crafted tasks. Time steps in this system are 100 ms
each. In this model 60 turn actions and 16 dashes
are used, while the world model has 9 dimensions,
including player positions, ball position and area on
the field where the play occurs. It concentrates on
Aggressive Defense Behavior (ADB). Learning is done
per episode, where rewards and penalties are assigned
at the end of an episode. They use predefined starting
situations to train certain low-level behaviors. IT uses
Monte-Carlo simulation, which we also find later on
in the Alpha-Zero approach. An important remark
made is that opponents did seem to behave differently
in seemingly symmetric situations. Dribbling behav-
ior is described as learning to select from 5 different
action triples, consisting of (X, Y, Rot) (2.0, 0.0, 2.0)
(2.5, 0.0, 1.5) (2.5, 1.5, 1.5) (3.0, 1.0, 1.0) (3.0,-10.0, 1.0).
Apparently these are sufficient to control the dribbling
behavior. The Brainstormers used this in the Midsize
League in 2006, 7 and 8 and used MotorSpeed, Go2Pos,
Intercept and Dribble.

57



Learning MSL Team Behavior 8.2 - Aug 2019

10.12.5 Cooksey2018 - CMUus 2018 Team Descrip-
tion

10.13. Papers to classify and comment

10.13.1 Denzinger1998 - Evolutionary On-line
Learning of Cooperative Behavior with
Situation-Action-Pairs

10.13.2 Bergkvist2003 - Machine learning in sim-
ulated RoboCup and Optimizing the deci-
sions of an Electric and Field agent

10.13.3 Stone2005 - Reinforcement Learning for
RoboCup Soccer (Keepaway)

10.13.4 Muller2006 - Making a Robot Learn to Play
Soccer Using Reward and Punishment

10.13.5 Soccer2010 - Robot Soccer and -Strategy De-
scription and Game Analysis

10.13.6 Kurek2015 - Deep Reinforcement Learning
in Keepaway Soccer

10.13.7 Soccer2017 - Interactive Machine Learning
Applied to Dribble a Ball

10.13.8 Caitlin2017 - Learning a Robot to Score
a Penalty Minimal Reward Reinforcement
Learning

10.13.9 Maeda2017 - Active Incremental Learning
of Robot Movement Primitives

10.14. To be included and evaluated

10.14.1 Haddadi1995

10.14.2 Sahota1994

10.14.3 Littman1994

10.14.4 Veloso1996

10.14.5 Andre1998

10.14.6 Matsubara1999

10.14.7 Birnsted1999

10.14.8 Balch1998

10.14.9 Veloso1997

10.14.10 Konda2000

10.14.11 Mnih1602

10.14.12 Foerster2018

10.14.13 Sunehag2018

10.14.14 Silver2016

10.14.15 Silver2017

10.14.16 Albrecht2018

10.14.17 Arulkumaran2019

10.14.18 Bahdanau2014

10.14.19 Bahdanau2015

58


	Preamble
	Reinforcement Learning
	Continual Learning
	Reinforcement and Q-Learning concepts
	Markov Decision Processes
	The Bellman Equation
	On-policy and Off-policy learning
	Model-based and Model-free learning
	The Learning Algorithm
	Discrete actions and Continuous actions

	Motivation and Design Goals
	Backgrounds of our approach
	Classification of the Game Situation
	Identifying individual Agent Actions
	Identifying actions of the Agent with the Ball

	Related Work on Opponent Modeling
	Policy Models
	Model Features
	Three Level Layered Models
	Action Recognition
	The Intentional Stance
	Reinforcement Learning
	Recurrent Networks
	Previous Work
	Contribution of this Work

	Our Opponent Modeling Approach
	Classifying Game Situations
	Identifying Formations and Set-Pieces
	Recognizing Action Patterns and Roles
	The contents of our logfiles
	Treating Soccer as a Classical Game
	Turn Based Soccer
	Objectives of the Neural Networks
	Our Neural Network Approach
	Project Planning and Status

	Analyzing the MSL Game Log files
	RefBox Situations
	Game Restart Situations
	Game Turnover Points
	Input for the Neural Network
	Multi Agent behavior
	Learning vs Capturing
	Validity of our approach
	Further Analysis

	Game Situation Classification
	Previous Work
	Analyzing Formations

	Analyzing Agent Actions
	Previous Work
	Agent Actions
	Analyzing Intentions
	Ball Actions

	The Neural Networks
	Network Types
	Recurrent Networks
	Attention Networks
	Loss and Rewards
	Training the Neural Network
	Using the network in Simulation

	Testing various Set-Pieces
	Conclusions and further work
	Appendix
	Previous work
	Tutorials
	Chollet2018 - Deep Learning with Python Chollet2018
	Santolaya2017 - Using Recurrent Neural Networks to Predict Custom Behavior from Interaction Data - Master Thesis 2017 UvA Santolaya2017
	Strathclyde2017 - Lecture Notes - Making Better Decisions - Opponent Modeling Strathclyde2017
	Juliani2019 - Simple Reinforcement Learning with TensorFlow: Part 3 - Model-Based RL Juliani2019
	Hafner2019 - Variable Sequence Lengths in TensorFlow Hafner2019
	Nair2017 - A Simple Alpha(Go) Zero Tutorial Nair2017
	Verch2017 - What Are Saliency Maps in Deep Learning? Verch2017
	Xu2018 - Beyond DQN/A3C: A Survey in Advanced Reinforcement Learning Xu2018
	Brownlee2017 - How Does Attention Work in Encoder-Decoder Recurrent Neural Networks Brownlee2017
	Plappert2016 - Keras-RL Github Repository with examples (8) Plappert2016

	Papers on General Opponent Modeling
	Stone2000 - Multi-agent Systems: A Survey from a Machine Learning Perspective Stone2000
	Carmel2000 - Incorporating Opponent Models into Adversary Search Carmel2000
	Hernandez-Leal2018 - Is multi-agent deep reinforcement learning the answer or the question? Hernandez-Leal2018
	Browning2004 - STP: Skills, Tactics and Plays for multi-robot control in adversarial environments. Browning2004
	Purmehr2010 - An overview on Opponent Modeling in RoboCup Soccer Simulation 2D. Pourmehr2010
	Koning2017 - Skills, Tactics and Plays for Distributed multi-robot control in Adversarial environments Koning2017
	Klooster2018 - Deep Learning for Opponent Action Prediction in Robot Soccer MSL. Klooster2018
	Schouten2018 - The Implementation of Setplays to the RoboCup middle-size League Schouten2018
	Lith2018 - A Minimalistic Approach to Identify and Localize Robots in RoboCup MSL SoccerLith2018
	Meerhoff2019 - Mining Soccer and Data: and Discovering patterns of tactics in trackingMeerhoff2019

	Opponent Modeling
	Iglesias2009 - The Winning Advantage: Using Opponent Models in Robot Soccer Iglesias2009
	Trevizan2010 - Learning Opponent’s Strategies in the RoboCup Small Size League Trevizan2010
	Mnih2013 - Playing Atari with Deep Inforcement Learning Mnih2013
	Mnih1602a - Asynchronous methods for Deep Reinforcement Learning Mnih1602a
	He2016 - Opponent Modeling in Deep Reinforcement Learning He2016
	Lillicrap2016 - Continuous Control with Deep Reinforcement Learning Lillicran2016
	Steffens2004 - Feature-Based Declarative Opponent-Modelling (8) - Steffens2004
	Ledezma2002 - Predicting Opponent Actions in the RoboSoccer (8) - Ledezma2002

	Strategy and Tactics
	Martinovic2010 - Robot Soccer - Strategy Description and Game Analysis Martinovic2010
	Hausknecht2016 - Deep Reinforcement Learning in Parameterized Action Space Hausknecht2016
	Xiong2018 - Parameterized Deep Q-Networks Learning: Reinforcement Learning with Discrete-Continuous Hybrid Action Space Xiong2018
	Biswas2014 - Opponent-Driven Planning and Execution for Pass, Attack, and Defense in a Multi-Robot Soccer Team Biswas2014

	Papers on DQN, DRQN and LSTM
	Hausknecht2015 - Deep Recurrent Q-Learning for Partially Observable MDPs Hausknecht2015
	Hasselt1509 - DDQN Deep Reinforcement Learning with Double Q-Learning (8) Hasselt1509
	Osband1602 - Deep Exploration via Bootstrapped DQN - (8) - Osband1602
	Gu1603 - NAF Continuous Deep Q-Learning with Model-based Acceleration (8) Gu1603
	Szita2006 - CEM Learning Tetris Using The Noisy Cross-Entropy Method (5) Szita2006
	Wang1511 - DDDQN Dueling Network Architectures for Deep Reinforcement (8) Learning Wang1511
	Schulman1707 - PPO Proximal Policy Optimization Algorithms (8) Schulman1707
	Wu2019 - A Comprehensive and Survey on Graph and Neural and Networks Wu2019
	Schaul2016 - Prioritized Experience Replay

	Recurrent Networks
	Arulkumaran2019 - AlphaStar: An Evolutionary Computation Perspective Arulkumaran2019
	Karpathy2015 - The Unreasonable Effectiveness of Recurrent Neural Networks Karpathy2015
	Olah2015 - Understanding LSTM Networks Olah2015
	Culurciello2018 - The fall of RNN / LSTM Culurciello2018

	Symbolic Processing
	Sales1994- An Approach to Solving the Symbol Grounding Problem: Neural Networks for Object Naming and Retrieval Sales1994
	Harnad1993 - Grounding Symbols in the Analog World with Neural Nets Harnad1993
	Zhang1707 - Learning like humans with Deep and Symbolic Networks Zhang1707
	Hohenecker1808 - Ontology Reasoning with Deep Neural Networks Hohenecker1808
	Garcez1905 - Neural-Symbolic Computing: An Effective Methodology for Principled Integration of Machine Learning and Reasoning Garcez1905
	Liao2017 - Object-Oriented Deep Learning Liao2017
	Mao2019 - The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words and Sentences From Natural Supervision Mao2019
	Garnelo2019 - Reconciling deep learning with symbolic artificial intelligence: representing objects and relations Garnelo2019
	Bennetot1909 - Towards Explainable Neural-Symbolic Visual Reasoning Bennetot1909
	Garnelo1609a - Towards Deep Symbolic Reinforcement Learning Garnelo1609a
	Rabinowitz2018 - Machine Theory of Mind - Rabinowitz2018

	Attention Models
	Marcus2017 - Deep Learning: A Critical Appraisal Marcus2017
	Qianli2017 - Object-Oriented Deep Learning Qianli2017
	ICLR2018 - Composable Planning with Attributes ICLR2018
	Garnelo1609 - Towards Deep Symbolic Reinforcement Learning
	Zhang1707 - Learning like humans
	Liao2018 - Symbolic Reasoning (Symbolic AI) and Machine Learning Liao2018
	Vaswani1706 - Attention Is All You Need Vaswani1706 (9)
	Brownlee2017 - How Does Attention Work in Encoder-Decoder Recurrent Neural Networks Brownlee2017
	MachineTalk2019 - Create The Transformer With Tensorflow 2.0 MachineTalk2019
	Rubik2019 - Introduction to Transformers Architecture Rubik2019
	DeepMind2019 - Learning explanatory rules from noisy data DeepMind2019
	SkyMind2018Symb - Symbolic Reasoning (Symbolic AI) and Machine Learning SkyMind2018Symb
	Vinayavekhin1806 - Learning and Understanding using Attention, Focusing on What is Relevant: Time-Series Vinayavekhin1806
	Galassi1902 - Attention please! A Critical Review of Neural Attention Models in and Natural Language and Processing Galassi1902
	Skymind2019 - A Beginner's Guide to Attention Mechanisms and Memory Networks Skymind2019
	Yang2008 - Hierarchical Attention Networks for Document Classification Yang2008
	Steels2005 - The Symbol Grounding Problem has been solved. So what’s next Steels2005
	Dennet1971 - Intentional Systems Theory Dennett1971
	Chen1711 - Dialogue Act Recognition via CRF-Attentive Structured Network Chen1711
	Liu2018 - Relational Attention Networks via Fully-Connected Conditional Random Fields Liu2018
	Nazerfard2010 - Conditional Random Fields for Activity Recognition in Smart Environments Nazerfard2010

	Formation Analysis
	FutsalExpert2018 - 6 Amazing Futsal Formations And Team Setups (8) FutsalExpert2018
	Power2017 - “Not All Passes Are Created Equal:” Objectively Measuring the Risk and Reward of Passes in Soccer from Tracking Data. Power2017
	Visser2001 - Recognizing Formations in Opponent Teams (7) Visser2001
	Disney2017 - Computer algorithm automatically recognizes soccer formations and defensive strategies
	Le2017 - Coordinated Multi-Agent Imitation Learning
	Power2018 - Mythbusting Set-Pieces in Soccer
	Felsen2018 - Where Will They Go? Predicting Fine-Grained Adversarial Multi-Agent Motion using Conditional Variational AutoEncoders (9) Felsen2018
	Wagenaar2019 - Using Deep and Convolutional Neural and Networks to Predict and Goal-Scoring Opportunities and in Soccer
	Power2016 - Not All Passes Are Created Equal: Objectively Measuring the Risk and Reward of Passes in Soccer from Tracking Data
	Le2017a - Data-Driven Ghosting using Deep Imitation Learning
	Zheng2016 - Generating Long-term Trajectories Using Deep Hierarchical Networks
	Ruiz2017 - The Leicester City Fairytale?: Utilizing New Soccer Analytics Tools to Compare Performance in the 15/16 & 16/17 EPL Seasons

	Action Models
	Zhang2019 - A Comprehensive Survey of Vision-Based Human Action Recognition Methods Zhang2019
	Ghosh2018 - Deep Learning for Videos: A 2018 Guide to Action Recognition Ghosh2018
	Wang2013 - Action Recognition with Improved Trajectories - Wang2013
	Cheng1501 - Advances in Human Action Recognition: A Survey Cheng1501
	Rahmani1602 - Learning a Deep and Model for Human and Action and Recognition from Novel and Viewpoints Rahmani1602
	Bagautdinov2014 - End-to-End Multi-Person and Action Localization and Collective Activity Bagautdinov2014
	Kasteren2008 - Accurate Activity Recognition in a Home Setting Kasteren2008
	Eddy1004 - What is a hidden Markov model? Eddy1004
	Echen2012 - Introduction to Conditional Random Fields Echen2012
	Ghahramani2001 - An Introduction to Hidden Markov Models and Bayesian Networks Ghahramani2001
	Wallach2004 - Conditional Random Fields: An Introduction Wallach2004
	Singh2016 - Recognizing Actions in Motion Trajectories Using Deep Neural Networks Singh2016

	Team Description Papers
	Hafner2002 - Brainstormers Tribots Team Description Paper Hafner2002
	Muller2006 - Making a Robot Learn to Play Soccer Using Reward and Punishment Muller2006
	Riedmiller2008 - Learning to Dribble on a Real Robot by Success and Failure Riedmiller2008
	Riedmiller2009 - Reinforcement learning for robot soccer Riedmiller2009
	Cooksey2018 - CMUus 2018 Team Description

	Papers to classify and comment
	Denzinger1998 - Evolutionary On-line Learning of Cooperative Behavior with Situation-Action-Pairs
	Bergkvist2003 - Machine learning in simulated RoboCup and Optimizing the decisions of an Electric and Field agent
	Stone2005 - Reinforcement Learning for RoboCup Soccer (Keepaway)
	Muller2006 - Making a Robot Learn to Play Soccer Using Reward and Punishment
	Soccer2010 - Robot Soccer and -Strategy Description and Game Analysis
	Kurek2015 - Deep Reinforcement Learning in Keepaway Soccer
	Soccer2017 - Interactive Machine Learning Applied to Dribble a Ball
	Caitlin2017 - Learning a Robot to Score a Penalty Minimal Reward Reinforcement Learning
	Maeda2017 - Active Incremental Learning of Robot Movement Primitives

	To be included and evaluated
	Haddadi1995
	Sahota1994
	Littman1994
	Veloso1996
	Andre1998
	Matsubara1999
	Birnsted1999
	Balch1998
	Veloso1997
	Konda2000
	Mnih1602
	Foerster2018
	Sunehag2018
	Silver2016
	Silver2017
	Albrecht2018
	Arulkumaran2019
	Bahdanau2014
	Bahdanau2015



