
P E T E R VA N L I T H

D E E P T U R T L E T O O L K I T
R O B O C U P M S L G A M E A N A LY S I S S O F T W A R E

P U B L I S H E D 2 0 2 0 B Y : T E C H U N I T E D (T U / e)

Copyright © 2020 Peter van Lith

published by: tech united TU/e www.TechUnited.nl

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in com-
pliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “as is” basis, without warranties or conditions of any kind, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

First printing, August 2020

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Contents

I Converting and Checking the File 7

Introduction 8

Loading the file 9

The User Interface 10

The Browsers 13

Technical Background 16

Checking Criteria 21

Anomalies in the input 23

II The Analist and Critic 26

III Making Set-Pieces 28

IV Behavior Patterns 30

V Learning Behaviors 32

VI Opponent Analysis 34

deepturtle toolkit 5

Dedicated to the brave Robotic-Soccer enthusiasts,

who appreciate AI and Robotics and value

the power of GOFAI, Python and TensorFlow.

6 peter van lith

Change History

This software is part of a project that started in 2016 as a system to recognize the shirt labels of robots, competing in the RoboCup
MSL competitions. This system used Deep Learning AI technology to recognize the ID and shirt color in order to identify the oppo-
nents. It was the start of a project, aimed at tracking the opponent’s actions and is slowly developing into a system to analyze and
understand team behavior.

It uses a combination of Knowledge Engineering principles, combined with Deep Learning in order to analyze, understand and
explain the behavior of our opponents.

The following changes have been made to the system:

Change History

Version Date Description
V0.3.0 31-10-17 First Deep learning version
V0.3.1 13-11-17 Included pretrained neural net
V0.4.0 17-11-17 First training with simulator
V0.4.1 23-09-18 Converted to newest version of TF
V0.4.2 28-11-18 Included first version of Alpha-Zero
V0.5.0 11-12-18 First Replay version from MatLab files
V0.6.0 02-01-19 Moved to Eclipse 2018-12

V0.6.1 27-02-19 Added Monitor and Step function
V0.7.0 27-09-19 Include Game Situation Classification
V0.7.1 21-10-19 Included 3-level tracing
V0.7.2 28-10-19 New full search function
V0.7.3 03-11-19 Included GameSit search facility
V0.8.0 14-11-19 Included TensorFlow 2.0
V0.8.1 11-01-20 Included Formation Analysis
V0.8.2 11-03-20 First Action and Remark Analysis
V0.9.0 28-04-20 Restructure reading in data and storage
V1.0.0 04-07-20 Included error checking + install
V1.1.0 01-08-20 Included debug option and manual

This is the first alpha-release. Many issues are still unresolved and is intended for initial user tests. The error checking facility is
almost complete. The additional Tabs in the application are under development and their use may result in crashes. Please provide
feedback if you find any issues in the facilities of the 〈Load Tab〉.

The current version has the following known issues:

Known Issues

ID Description
V1.1.0-001 Reappearing robots do not get the proper ID
V1.1.0-002 Some newer files crash during load
V1.1.0-003 New format must use meta-data
V1.1.0.004 STP files use new codes for DefCon

Part I

Converting and Checking the File

Introduction

This manual explains the use of the DeepTurtle Toolkit.
The toolkit has been developed to enable game analyses, using the 〈.mat〉 files, generated by the Tech United TURTLE robots.

Analysis is performed in a number of steps, explained in the chapters following. The analyses may be performed on a single 〈.mat〉
file, but also on batches of files, so an overview of all 〈.mat〉 files of a certain year can be grouped together. Output of each step is
written to a logfile and additionally statistics are written in a 〈.csv〉 file for further analysis.

The DeepTurtle Toolkit consists of the following parts:

1. File Conversion and Checks
2. The Analist and the Critic
3. Making Set-Pieces
4. Behavior Patterns
5. Learning Behaviors
6. Opponent Analysis

Currently only the first part, File Conversion and Checks has been completed. The next phase follows soon, but the entire system
is part of an ongoing process that will take some years to complete. Each phase first describes what that part does and how the
software is used. In addition a more detailed technical description is included, explaining how the software works and providing
more background and implementation details. The intention is to distill several technical articles from this document as well.

Installing and Testing the Software

Unpack the 〈DeepTurle.tar.xz〉 file into your applications directory. From inside this directory 〈dist〉 start the program 〈.dist/DeepTurtle/DeepTurtle〉.
The distribution also contains the testfiles that were used to create the examples in this manual and it starts up automatically with
these files selected. The current distribution has been created for use with Linux. Versions for Mac and Windows may also be created
when there is a need for them.

Before starting the program with your own files, copy the 〈MatFiles〉 directory to your desktop into which you place the 〈.mat〉
files that must be checked. This directory must contain two subdirectories 〈MAT and STP〉 in which subdirectories are placed. So the
directory structure, where DeepTurtle looks for the 〈.mat〉 files is given below. The testfiles are copied as well and are located in the
directory 〈0Testsets〉. Instead of a directory you may if course, also use a symbolic link.

Desktop MatFiles

STP

... Files with new STP format

MAT

... Directory with some .mat files

file1.mat

file2.mat

Loading the file

Loading a 〈.mat〉 file involves several steps to prepare the data for analysis. First of all the data is converted to a new World Model
format, more suited for analysis. The position data of all robots in the field is recorded by each TURTLE individually, along with that
TURTLE’s interpretation of the game situation. There are many situations, where information is lost or in conflict with each other for
brief moments, and these instances need to be corrected or removed.

This first step therefore includes a number of checks to find out if the data is consistent and plausible. For instance, conflicts in
assessments of the game situation or the position and speed of the ball are checked with the data from all TURTLEs and the best
information is used. Inconsistencies and anomalies are removed to allow further analysis.

A report is generated with warnings and errors, showing which steps contain problems and where these were corrected.All
information between stops and restarts is removed, so we only use the real game moments.

Then the data is split into episodes from start to stop moments. A further subdivision is made in so-called Ball Possession
Turnovers (BPT). Each sub-episode in which a team has possession of the ball is analyzed separately and serves as the basis for
the game analysis in the steps following.

The User Interface

The User Interface consists of a number or 〈tabs〉, one for each phase. The first one is the 〈Load〉 tab, shown below.

The user interface with the error log and statistics.
Figure 1: *

the user interface 11

A file is selected by first selecting a directory and within that directory a single file.
Multiple files are selected by just selecting a directory and using the Check button.

When the file is of a newer format, as a result of the introduction of STP,
first check the STP box, before selecting a file. We are currently implementing the
metaData facility. When that is done, this checkbox will disappear and the separate
STP directory will no longer be needed.

After the file is selected, use the 〈Load〉 button to load the file. When you want
to check an entire directory, select the 〈Check〉 button. The 〈TestCase〉 button is used to
generate a new testCase for inclusion in the unit tests. It may also be used to inspect
the contents of a single step of the World Model. Please note that when the 〈Debug〉
switch is on, Debug information is also included in the TestCase.

The group of CheckBoxes is used to select what is done with errors, found in the
file. When 〈ErrorCorr〉 is turned off, no corrections are made. This is useful when you
want to inspect certain errors and want to see the original data in the file, using the
browsers, that will be explained in the Browsers chapter.

The 〈Cluster〉 option is used to group errors in successive steps into clusters, so
that not every step is listed separately as an error. Clustering does not affect the error
counts.

The 〈Debug〉 option is selected to show the original information for debugging in
the SetPiece browser.

The system checks for errors of the following types: (See Table 1)

1. B - Ball info

2. R - Robot info

3. D - DefCon info

4. A - Action info

By selecting the boxes, the error checking may be disabled for certain types. The
second row is to suppress warnings as well.

The defaults are used to influence how critical the checking procedures are with
respect to the speed and distances, used in the checking rules. The following values
are used:

1. MaxVel - Used as maximum velocity of the ball. If the ball velocity is higher than
this value, the movement is considered irrational and is ignored.

2. ThrVel - Is the threshold value to compare the estimated ball velocity against the
apparent velocity, calculated from the distance travelled between two time steps.

3. DistCpbOur - Distance in meters to consider a TURTLE to be owning the ball. It is
used to check the validity of the CPB switch in the original data.

4. DistCpbOpp - Distance in meters to consider an opponent to be owning the ball.
Because we can only judge if an opponent has the ball by the distance, this is set
less critical than our own distance. In many cases however, the TURTLE software
considers distances of around 60 cm to be owning the ball.

The checks can be made more or less critical by changing these default values.

12 deepturtle toolkit

During the analysis all errors and warnings are counted and the total counts are
shown in the 〈ErrType〉 table. Once the file has been loaded, this table can be used to
select an error type. All steps in which the error occurs, will then be loaded into the
〈DefCon Table〉, as explained in the Browsers section.

An Error Log is created and shown in the large window on the right side of the
User Interface. It lists all errors, using a 2-position code. The third position is a *, + or -
sign or a blanc.
A 〈-〉 sign means that this is a warning only and has no direct impact on the results. It
usually signals a conflict that could be resolved, but may be worth further investiga-
tion.
A 〈+〉 sign means that this is an error that resulted in a change in the output. It also
lists the data that was used to determine that there was an error, along with the cor-
rected value. If the option 〈ErrorCorr〉 was disabled, no + signs will be shown
A 〈 〉 means that this was an error, but no correction was made, either because there
was insufficient information or the error is corrected elsewhere.
A 〈*〉 means that there was a cluster of errors and the beginning - and end step is
shown along with the number of steps. Error Logs appear in the large textbox

on the right. This text is scrollable and
may be copied and pasted to other
programs.

The Browsers

Once the file is loaded and the 〈errType〉 and 〈RefBox〉 tables have been filled, selections
may be made from these tables. Selections are always for one or more steps and the
positions of all players are shown in the field. The 〈Blue/White〉 option may be selected
to change the background color of the field.

The Field view of a selected error type
Figure 2: *

14 deepturtle toolkit

When selecting an error type from the 〈ErrType〉 table, the 〈Action Table〉 is filled
with all occurrences of this error. When one of these errors is selected, the Field image
is shown with all robots in position. When the error is part of a cluster of errors, the
first and last occurrence or the error is shown, indicating the start- and end positions
of all TURTLEs and the ball.

When a step is selected, either by clicking the Action Table, or by selecting a new
step number and the Debug switch is ON, then the Debug information is shown. This
consists of a table with the following fields:

1. ID - The TURTLE ID

2. DC - DefCon code as used by this TURTLE

3. BID - ID of the TURTLE, whose Ball info is used

4. CPB - Status of the TURTLE’s CPB switch

5. T - Team CPB ID

6. Opp - ID of Opponent that has the Ball

7. OC - Opponent Count of this TURTLE

8. OurD - Distance to the Ball for our TURTLES

9. OppD - Distance to the Ball for each Opponent

The last line contains the IDs of the best data, used in the new World Model. The
Technical Background of this part (chapter) offers a more detailed description of these
fields, along with some examples.

The bottom part contains a table, showing for each TURTLE, which opponents
it sees. Especially with ’missing’ or ’disappearing’ robots, this can be used to check
which opponents cannot be seen. It may be used to determine the amount of overlap
or the reason why these opponents disappear from view. In this example all TURTLES,
except 4, cannot see opponent 2.

The 〈RefBox Table〉 shows all episodes of the game. This part is only included here for
completeness, but is explained in more detail in Part III (Set-Pieces).

THE BROWSERS 15

The three-state checkbox 〈Stp/Ann/GSI〉 is used to select one of the three views of
the game state (will be replaced by the view selection box, currently at the bottom of
the Tab window.):

1. Stp - SetPiece view in which the positions and trajectories of all TURTLEs and the
Ball are shown along with the positions of the opponents.

2. Ann - Annotations view. During load it shows the error log. In other stages,
background information is shown in the text window.

3. GSI - Shows the Game Situation Images, used for the learning part of the system.
These are images that represent the game state and individual images for each
agent, representing the Agent Situation Image (ASI). These images are input to the
Neural Network, that learns the behavior patterns. More details can be found in
Part V.

By selecting the check box, you can switch between the three views. During Load
only the SetPiece and Annotation views are used.

Technical Background

Introduction

As part of a project to analyze and understand team behaviors of
our opponents, we first analyze the behavior of our own team.
Because the logfiles contain a lot of detail about the goals and
actions of our robots, this allows analyses that are not possible on
the data of our opponents, for which we only have location data.

The internal data from our robots is used to create a model
that serves as ground truth, using all available information about
actions, targets and combined game states. This will be used to
learn to recognize behaviors from the position data only, first
for our own team, so we can verify if the model learns properly.
Then the same model will be used to make predictions about
our opponents. In order to do this, the ground truth must be
consistent, which is the main aim of this phase.

During game play, speed and accuracy of the robot positions
are most important, however during analysis consistency of the
data between robots and successive steps are more important.
There are inconsistencies in the information of individual robots,
but also differences in judgment of the game situation between
robots.

This chapter explains the anomalies that were found and de-
scribes how the conflicts are resolved. They may partly be caused
by a lack of understanding how the data should be interpreted.
In other cases they may have been introduced by small errors,
that were possibly resolved in later versions of the TURTLE
software.

But in order to use all available logfiles for analysis, these con-
flicts in older files need to be detected and resolved, before they
become useful. There may also be some underlying problems still
remaining in the software, that need to be fixed. We checked the
most recent files, and they also contain inconsistencies. Hope-
fully this information is of use to the team, responsible for the
development on the TURTLE software. Otherwise it will serve to
clarify the way that the data is organized.

To perform the analysis, we first studied the GreenField
source code and used the logic as much as possible in our Python
code. In the GreenField code, the information of a single robot is
used as a basis to show the game conditions, so initially the same
procedure was adopted. However in some instances there were
inconsistencies, so the data from all active robots was combined
to create a more complete world model. This showed that in
some cases robots disagreed about the game situation and a facil-
ity was created to find these inconsistencies and fix them, using
all the available data. The 〈.mat〉 files are converted on-the-fly by
our software as part of the analysis. A new internal file format
is generated, that is better suited for the intended analyses and

contains the integrated World Model data with most known
inconsistencies resolved.

The World Model

Integrating the data of each individual robot into a World Model
involves several different procedures, depending on the partic-
ular items. This results in a new data structure that contains the
following elements:

1. 0 - Ball Info
Pose (X Y)
ID of robot closest To Ball (CTB)
ID of robot with CPB (Our or Opp)

2. 1 - 7 Turtle Info (7 elements)
Pose (X Y O), ID
Role, Role in Formation
Agent Formation, BallID, Action
Target (X Y)

3. 8 - 12 Opponent Info (5 elements)
Pose (X Y), ID
Role in Formation
Agent Formation

4. 13 - 22 General information for each time step
Seq #, Time Stamp
Error, Vanishes, Certainty
RefBox, DefCon
Our Formation, Opp Formation
Ball Owner state Us &Them (BO,BU,BT)

This information is only collected for real game actions, which
for each RefBox situation happen between Start and Stop condi-
tions. The remaining time steps only contain a single item, the
Start and Stop code, to signal preparation activities that are not
used for analysis.

The generated set-pieces are based on moments, defined by
Ball Possession Turnovers (BPT). Information of Ball Ownership
(BO) is closely related to the DefCon situation (See Figure 3).
Sometimes the data contains incorrect assessments of the DefCon
situation, sometimes also related to erroneous judgments of Ball
Ownership. Table 1 describes the various situations.

Conflict Resolution

The anomalies that will be described in the sections to follow,
are happening temporarily and may have a limited influence
during a competition. When using the data for analysis however,
conflicts may create a game condition that leads to erroneous
conclusions. So we want to remove these conflicts as much as
possible. There is another side benefit of performing error check-
ing; they may reveal new or existing software problems during
development or prior to a competition, that may be hard to spot
with other methods. Fortunately there is enough redundancy in
the information, which allows us to detect errors and addition-
ally to make corrections in the following situations:

1. RefBox and DefCon
2. Ball Position
3. CPB
4. OppBall
5. Turtle locations
6. Opponent locations
7. Opponent IDs

TECHNICAL BACKGROUND 17

Ball, Robots, DefCon & Action Conditions

Ball Cond Data

B1- DiffEst BallEst != pose ballDiff action

B2+ EstVel=0 Ball Vel > 0 D=ballDist T=time V=ballVel actionStr

B3 VelDiff Ball Vel != appVel BV=ballVel EV=estVel DV=velDiff action

B4- MaxVel Unlikely movement BV=ballVel D=ballDist T=time action

B5+ LostBall Ball lost

B6 Ghosted Ghosted ball

Robots Cond Data

R1 No Opps Warning BT=bestOpp BU=bestOur OC=oppCount ids

R2- Mismatch Turtles disagree BT=bestOpp BU=bestOur OC=oppCount ids

R3- NoGK Warn No Keeper

R4- Less<5 opps Warn missing Opps actCount

R5+ Vanished Opp disappeared OC=oppCount [vanish]

R6- Re-Appear Opp re-appeared OC=oppCount [vanish]

R7- Appear Missing opp back OC=oppCount

DefCon Cond Data

D1+ CPB Diff DefCon CPB error defCon->newDefCon CPB=cpb CTB=ctb D=ctbDist

D2+ CTB Diff CTB=CPB < 0.6m defCon->newDefCon CPB=cpb CTB=ctb D=ctbDist

D3+ BO Diff Ball other team defCon->newDefCon BO=BO CTB=ctb D=ctbDist

D4+ Invalid Invalid DefCon defCon->newDefCon BO=BO CTB=ctb D=ctbDist

Action Cond Data

A1 NoBall Shoot/Dribble no CPB ID=id action

A2+ Scrum Scrum undetected CPB=ourCPB CTB=oppCTB defCon

A3+ NoScrum Scrum not true CPB=ourCPB CTB=oppCTB

Table 1: Consistency checks in Ball,
Robots, DefCon and Action situations.
Code with a - sign are warnings only.

DefCon

The RefBox situation is communicated by RefBox commands and
is the same for all robots. This is sometimes not the case for the
DefCon situation. Because robots have different beliefs about
their position and those of the opponents, their judgment about
the Game Situation differs.

This is primarily caused by differences about who currently
owns the ball. Only the robot that currently has the ball in its
ball-handler is certain about ball ownership. Often situations are
found, where several of the robots think that a certain robot owns
the ball, while that robot knows this is not the case. Therefore
we take the CPB as the most reliable source of information and
check this against the estimated position of the ball. To make
analysis possible, the DefCon situation is crucial and should
adhere to the state diagram in Figure 3.

No Ball OurBall

OurBall Free

Scrum

OppBall

OppBall Free

Figure 3: Game Turnover State Transition Diagram.

18 deepturtle toolkit

Ball Position and Velocity

If the current robot has its CPB flag turned on, the ball position is
calculated from the robot’s position and orientation. Otherwise,
the most frequently used ball information is taken. The system
also records which opponent currently owns the ball. To check
this we find the robot, closest to the ball (CTB) and compare
them. If another robot is closer to the ball, this is taken as the
opponent CPB. However when the distance to the ball of an op-
ponent is less than the default 〈CpbDist〉, this is not considered as
owning the ball and an error is raised. In case the ball is lost, the
last known position of the ball is used. In addition we also check
the estimated ball velocity against its apparent velocity, which
we calculate from the distance traveled between successive steps.
If the ball has apparently moved, but the ball velocity was zero,
we discard this movement. Also if the apparent velocity is higher
than the default maximum 〈maxVel〉, this movement is ignored as
well.
Occasionally, a situation arises when a ’vanished’ or ’missing’
opponent is moving with the ball. In such a case we signal a
’Ghosted Ball’ situation (see section Ghosted Ball movements)
A number of things became apparent, while performing these
checks. Many of the reported inaccuracies or inconsistencies
occur in clusters. For instance, during a dribble or a shoot, the
difference between the turtle’s ball position and the estimate is
usually around 17 cm, which could be the diameter of the ball.
After a shot there is often a relatively large difference between
the estimated velocity and the apparent velocity. This may be
caused by a difference in frequency of measurement between the
ball position and the robot positions of each TURTLE. When a
shot is detected, there is a relatively long delay, before the ball
movement is seen, sometimes about 8 time steps (400 - 800 ms)

CPB

One of the most important items is the Check Ball Possession
(CPB) switch. This is a physical switch in the TURTLE’s ball
handler, that is pressed by the ball. In some cases we see that
other robots ’think’ that a certain robot owns the ball, while that
particular robot ’knows’ that this is not the case and vice versa.
Each robot keeps an item that indicates which robot’s ball info
was used. In order to find the ’best’ ball position data, we count
which robot’s ball info is used most. This is done for each cycle.
We then check if this robot has its CPB switch turned on. This
robot’s information is then used to determine the position of
the ball. When the CPB is off, we take the most frequently used
ballID as basis for the ball position.

OppBall

For ball possession by the opponents, we follow a different proce-
dure. Each TURTLE keeps a list of the positions of all opponents
and a list with ID’s associated with each of these positions. Not
every robot can see all opponents, so we count how many op-
ponents each robot can see. The robot that sees most robots is
selected as the one, whose opponent positions are used. If several
robots see the same number of robots, then the robot, whose ball
info is used most is selected.
This however creates a problem with the identification, because

each TURTLE assigns its own ID to each opponent. To overcome
this issue we re-establish each opponent’s identity in each step of
an episode. See section Opponent IDs for more details.
We also count how many robots believe the opponent has the
ball. This is an indication of how reliable the information is.
Sometimes one of our robots has the ball (CPB), while the other
robots believe, the opponent has the ball. This should usually be
an indication of a Scrum situation. When multiple robots believe
that the opponent has the ball, we also check the distance to the
ball that each of these robots has calculated. We only do this
however when the distance to the ball is less than the default
〈CpbDist〉.

Turtle locations

In the TURTLE software a complex procedure is used to de-
termine the most probable location. For the analysis of team
behavior, we use relative positions in an ’apparent’ team forma-
tion, so the exact location is of less importance than during a
game.

Opponent locations

Each robot keeps a list of robot locations and a separate list of
IDs associated with these robots. In some cases we noticed that
there seemed to be more than 5 robots on the field. In that case
it is hard to determine which information is correct. Especially
in the case when an additional robot seems to own the ball, there
is a need to remove one of the other robots, since we only keep
track of 5 robots.

Opponent IDs

To analyze individual robot behavior we need a consistent ID
across all time steps of an episode. First of all we need to keep
track of robots that are disappearing or re-appearing. We also
determine if there is a robot in the opponent’s goal area.
To track the opponents, we first identify the goal keeper. Then
for the remaining robots, we take the most recent robots from the
TURTLE’s opponent ID list and track their movements between
steps, using the hungarian algorithm (a.k.a. Kuhn-Munkres). See
Table 2 for an example.

Tracking Opponents

To track our opponents we combine the opponent position in-
formation from all TURTLEs. To combine this data with the
previous time step, we consider 3 different conditions. At the
start of an episode we determine how many opponents are in the
field and assign an ID to each of them, based on their distance
to the opponent goal. The Keeper always gets ID 1. If there is
no keeper, its slot is empty. If more opponents are missing, their
slots are also empty and are labeled as Inactive and considered
’missing’. When during the episode robots disappear, they are
considered ’vanished’ and we take the last known position for
that robot. In all other cases the robots are considered Active
and are labeled as Opponent. When using the Hungarian, we
calculate the distance between the current and previous position

TECHNICAL BACKGROUND 19

for each opponent, so we can assign the ID that was generated
at the start of the episode. For ’missing’ robots we generate a
position outside the field that is unique for each opponent. A
similar, but farther away position is generated for ’vanished’
robots. The Hungarian then calculates the assignment of the ID’s
by comparing the distances between the current and previous
positions.

Disappearing and Reappearing IDs

TURTLEs keep a list of 10 obstacles and decide, based on their
diameter if this is an opponent. Occasionally, a TURTLE may
lose track of one or more opponents. In such a case, there are
for a brief moment less than 5 robots visible (see step 583 in
Table 2) .When the robot re-appears, a new ID is assigned (ID
5 in step 584), after which the system stabilizes and the oldest
ID is removed (step 586). After that the system once again sees
5 robots. To deal with this situation, step 583 will keep the pose
information of the robot with ID 4. In the next steps it will take
the last 5 IDs from the list, dropping the old ID of 3. Robots are
only physically removed from the field during a stoppage. So
only if an episode starts out with less than 5 robots, the episode
will assume that the opponent plays with 1 or more ’missing’
robots. .

581 [3. 7. 2. 1. 4. 0. 0. 0. 0. 0.] 5 Opps
582 [3. 7. 2. 1. 4. 0. 0. 0. 0. 0.]
583 [3. 7. 2. 1. 0. 0. 0. 0. 0. 0.] 4 Opps
584 [3. 7. 2. 1. 4. 5. 0. 0. 0. 0.] 6 Opps
585 [3. 7. 2. 1. 4. 5. 0. 0. 0. 0.]
586 [7. 2. 1. 4. 5. 0. 0. 0. 0. 0.] 5 Opps
587 [7. 2. 1. 4. 5. 0. 0. 0. 0. 0.]
588 [7. 2. 1. 4. 5. 0. 0. 0. 0. 0.]
589 [7. 2. 1. 4. 5. 0. 0. 0. 0. 0.]
590 [7. 2. 1. 4. 5. 0. 0. 0. 0. 0.]
591 [7. 2. 1. 4. 5. 0. 0. 0. 0. 0.]

Table 2: Example IDs of robots in steps 581-591

Another way of looking at the disappearance and re-appearance
of robots is checking the positions of the opponents table (see
Table ??). When the data comes from different TURTLEs, their
data needs to be correlated and be given a new ID. This is done
in the first step of an episode. ID 1 is reserved for the keeper. The
remaining poses are sorted on distance from the opponent’s goal,
to make sure that when a keeper was outside it’s goal, it may
later occupy this slot.
In all successive steps, the identities are assigned based on prox-
imity, using a cost matrix. Notice that in step 106 (Table ??),
the pose of robot 2 is lost. We then take it’s previous position
and use this instead (not shown here). When a robot re-appears
later on, it’s empty slot is taken by the newly appearing robot
in step 118. Also notice the warnings given in step 104 and 118,
signaling disagreement between the Turtles about the number of
observed opponents.

Table 3: Example of disappearing and re-appearing opponents

Ghosted Ball Movements

When an episode starts with one or ore missing robots, this
may mean that they are not on the field, but they could also be
temporarily invisible. Especially in the case, where a ’missing’
or ’vanished’ robot has the ball, the system will connect the ball
with the wrong robot. When that ball is moved by actions of a
missing robot, we see ’ghosted’ ball movements. Such a situation
appears in step 4991, where opponent 2 is missing and appears
in step 5014.
There is another example of a ball moving, where the opponent
is missing. (Find this example and describe it.)

Checking Who Sees Who

Robots that go ’missing’ and ’vanish’ occur frequently. When the
other TURTLEs can see the missing robots this is compensated
for, but sometimes there is no overlap between what the TUR-
TLEs see, and the position of an opponent becomes unknown. In
these cases, we keep the previous position of the opponent, until
it re-appears. If one or more opponents are not visible at the start
of an episode, it may mean that they are damaged and will not

20 deepturtle toolkit

be present during the episode (’missing’), or they are temporarily
invisible (’vanished’). They may appear or re-appear later in the
episode.
In Table 13 the situation of step 586 is shown. TURTLE 3 sees 6

opponents, of which the most recent 5 ones are used. TURTLEs
2, 4 and 6 see four opponents, while TURTLE 1 sees all of them.
The numbers are the indices of the ID list from which the data
is retrieved. The opponents that are missing are C5 (1, 4) and C2

(6). Now check the field image. TURTLEs 2 and 4 are missing
C5, while TURTLE 6 is missing C2. C5 and C2 are close together,
so this may cause the problem in this case. Using this facility
we may check if proximity also causes other missing opponent
occurrences.
Notice that the two ’vanished’ robots C2 and C5 are at the far
end of the field. The TURTLEs show their start and end position
in this episode. Only our Keeper sees both opponents, that some
other TURTLEs cannot see. It seems that robots that are far away
and close together are mostly the robots that go ’missing’. That
seems true for most of the ’vanishing’ robots, which mostly are
the opponent GoalKeeper and a nearby robot. Other cases are
rare.

Missing Opps Step 586

Stp ID C1 C2 C3 C4 C5 OC
586 1 4 2 3 1 5 5
586 2 1 3 4 2 4
586 3 4 2 3 1 5 6
586 4 1 3 4 2 4
586 6 1 4 2 3 4

Table 4: Example of view of all opponents by each TURTLE.

Actions

Finally we check if the robot’s action is consistent with the other
known data. If a robot is performing a Shoot action, but is not in
possession of the ball, this is an error situation. The same applies
for a Dribble operation. In a Scrum situation, two robots must be
very close to the ball.

The Log-file

The log-file is a large data structure that contains the data used
by each of the TURTLEs for every time step. Examples given in
this chapter are mostly from the file:

Falcons_first_half.mat from 3 Dec 2018.

In addition we also checked some more files both from 2018 and
2019, to make sure these were not incidental problems. We also
checked the most recent file:

07Jul2019_06_45_Water_first_half.mat.

As a result of the introduction of STP the file format has been
changed, so our software was adapted to allow te use of dif-
ferent file formats, so we can compare. In addition meta-Data
was included in the file, which is much more flexible, but also
introduced new codes that made comparison with older codes in-
compatible, so we must provide a facility to convert the codes to
the newer values. Some more work is still needed to make a full
evaluation of the situation of the latest version of the log-files.

Checking Criteria

The different error categories as shown in Table 1 are based on a number of criteria, that can be altered by changing some variables in
the user interface. The Checking Rules are based on the following considerations:

Ball, Robots, DefCon & Action Conditions

Ball Cond/Data

B1- DiffEst The logfile contains the estimated Ball Position (BallEst). This is checked against the actual Ball Position. If
the difference is larger than the 〈DistCpbOur〉 or 〈DistCpbOpp〉, this error is raised. 〈DistCpb〉 is the dis-
tance to the ball when a robot is considered to own the ball. The difference is given and the CPB owner is
shown. If there is no ball owner, the action of the current robot is shown.
D=ballDist T=time V=ballVel actionStr

B2+ EstVel=0 If the estimated velocity (EstVel) is zero, but the ball has moved between two time steps, this error is raised.
The velocity, time and distance are shown as well as the robot action as in Ball1.
D=ballDist T=time V=ballVel actionStr

B3 VelDiff When the difference between the estimated velocity and the apparent velocity is larger than half the maximum
ball velocity, this error is raised. The Ball velocitu is shown along with the estimated velocity, the distance and
the time. Also the action is shown as in Ball1.
BV=ballVel EV=estVel DV=velDiff action

B4+ MaxVel If the estimated velocity is nonzero and the apparent velocity is larger than the 〈MaxVel〉 this is an unlikely
movement. It is ignored and an error is raised. The same data is shown as in Ball3
BV=ballVel D=ballDist T=time action

B5+ LostBall When we have a lostBall situation, where the ball cannot be found, the last known position of the ball is used.
B6+ GhostBall When we have a ball moving without a known ball owner

BV=ballVel D=ballDist T=time action

DefCon Cond/Data
D1+ CPB Diff When the current ball owner (bestCpb) DefCon does not match the calculated DefCon an error is raised. The

old and new DefCon are shown along with the CPB and the CTB and distance to the ball.
defCon->newDefCon CPB=cpb CTB=ctb D=ctbDist

D2+ CTB Diff When the calculated oppBall DefCon does not match the DefCon in a ballFree situation, the old and new
DefCon are shown along with the robot closest to the ball (CTB) and the distance to the ball.
defCon->newDefCon CPB=cpb CTB=ctb D=ctbDist

D3+ BO Diff When the calculated DefCon does not match the DefCon in a ballFree situation, the old and new DefCon are
shown along with the most recent ball owner (BO) and CTB with the distance to the ball.
defCon->newDefCon BO=BO CTB=ctb D=ctbDist

D4+ Invalid When the DefCon code is invalid, a warning is issued. A new DefCon is calculated and used instead.
defCon->newDefCon BO=BO CTB=ctb D=ctbDist

22 deepturtle toolkit

Ball, Robots, DefCon & Action Conditions

Robots Cond/Data

R1 No Opps If during an episode all opponents are missing or vanished, a warning is issued. The bestOpp and bestOur
are shown along with the number of oponents and the ID list.
BT=bestOpp BU=bestOur OC=oppCount ids

R2- Mismatch If the turtle whose opponent data is used detects a disagreement between the number of opponents, a
warning is given and a list of all seen opponents is given for each active turtle. Data shown is the same as
Robots1.
BT=bestOpp BU=bestOur OC=oppCount ids

R3- NoGK When an episode starts without a keeper in the opponent’s goal area, a warning is issued. Missing oppo-
nents are considered missing during the entire episode. When they suddenly appear, they are no longer
missing. Missing robots are treated differently than vanishing robots.

R4- Less<5 opps When an episode starts with less than 5 opponents, a warning for missing robots is issued. The number of
active robots is shown.
actCount

R5+ Vanished If one of the opponents vanishes, a warning is issued. The number of opponents is shown along with the
vanished list.
OC=oppCount [vanish]

R6- Re-Appear If one of the vanished robots re-appears, a warning is issued. info shown is the same as Robots5.
OC=oppCount [vanish]

R7- Appear If one of the missing robots appears, a warning is issued. info shown is the same as Robots5.
OC=oppCount [missing]

Action Cond/Data

A1 NoBall If a turtle action is to shoot the ball or to dribble, but that turtle does not own the ball, an error is raised.
The ID and action is shown.
ID=id action

A2+ Scrum When we have an ourBall or oppBall situation, but the other party is also at CPB distance, a Scrum was
not detected. The CPB and CTB are shown along with the DefCon. The new DefCon is Scrum.
CPB=ourCPB CTB=oppCTB defCon

A3+ NoScrum When the DefCon is Scrum but both robots are not in CPB distance, there is no Scrum and an error is
raised. The CPB and CTB are shown.
CPB=ourCPB CTB=oppCTB

Table 5: Consistency checks in Ball,
Robots, DefCon and Action situations.
Code with a - sign are warnings only.

Anomalies in the input

In a number of tables, we show examples of the kind of prob-
lems, found in the files. In each table we list the data from all
TURTLEs in a number of fields:

1. Stp - Step number
2. ID - RobotID
3. DC - DefCon 1=OurBall, 2=OurBallFree, 3=Scrum,

4=OppBall, 5=OppBallFree
4. BID - BallID, ID of the TURTLE whose ball data was used
5. CPB - CPB for this TURTLE
6. T - CPBTeam, CPB code used by the team
7. Opp - BallOpp indicator which opponent has the ball
8. OC - Opponent count indicates how many opponents the

TURTLE sees
9. Dist - Distance between the ball and the closest robot

We integrate this data by finding the best data for Our
robots, the CPB and the Opp in three fields; 〈bestOur〉, 〈bestCpb〉,
〈bestOpp〉.

• bestOur is the robot whose ball info is used most frequently.
If the robot owns the ball this info is used instead.

• bestCpb is the robot whose CPB switch is on.
• bestOpp is the robot that sees most opponents. If 〈bestOur〉

sees the same number of opponents, then 〈bestOpp〉 and
〈bestOur〉 are the same.

The tables shown in the following sections show the best in
the last line.

DefCon does not match CPB

In step 89 robot 4 has the ball (CPB). All robots also think 4 has
the ball. 4 is the most used for the Ball. All counted 4 oppo-
nents, so 4 is taken as bestOpp. Get Defcon of bestOur, which
is 2 (OurBallFree), while the other robots think it is 1 (OurBall).
Unfortunately state 2 for robot 4 is wrong, since it has the ball
and should be OurBall. Strangely enough the other robots have
the correct DefCon.

OurBall Step 89

Stp ID DC BID CPB T Opp OC OurD OppD
89 1 1 1 0 4 0 4 11.92 0
89 2 1 4 0 4 0 4 6.78 0
89 3 1 3 0 4 0 4 2.37 0
89 4 2 4 1 4 0 4 0.20 0
89 6 1 4 0 4 0 4 7.84 0

+ 2 4 4 4

Table 6: Summary of step 89. Turtle 4 has the ball, but its Def-
Con is OurBallFree. Strangely enough the other robots correctly
believe OurBall.

Conclusion: Robot 4 has the ball, but sets DefCon to ourBallFree
(2), which should be OurBall (1)
One would expect that such a change would be picked up by the
other robots in a few cycles, however only in step 95, the situa-
tion changes, because robot 4 detects that the opponent has the
ball and sets DefCon to 4 (OppBall). It takes 2 steps, before the
other robots notice, with the exception of the keeper, who beliefs
OppBallFree (5) (Sequence not shown). Because the majority
takes the information from robot 4, we can still use the correct
DefCon.
In step 95 (see table 11), robot 4 detects oppBall with a distance
of 90 cm between the opponent and the ball. However this robot
is the only one that sees this opponent as having the ball, while
90 cm is a bit much to qualify as owning the ball. Actually TUR-
TLE 3 is closer to the ball at a distance of 0.36, although it does
not have the CPB on. The TURTLE software however, takes
this as true. None of the others seem to agree. bestOur is 3, so
DefCon is 1 (OurBall), which is correct after all.

OurBallFree Step 95

Stp ID DC BID CPB T Opp OC OurD OppD
95 1 5 1 0 0 0 4 13.03 0
95 2 1 3 0 0 0 4 7.81 0
95 3 1 3 0 0 0 4 0.36 0
95 4 4 4 0 0 3 4 2.14 0.90
95 6 2 3 0 0 0 4 8.28 0

+ 1 3 0 3

Table 7: TURTLE 4 believes Opp 3 has the ball. but the distance
to the ball is 90 cm, while TURTLE 3 is closer to the ball.

Multiple robots seeing an oppBall situation

In step 96 three TURTLEs see that opponent C3 has the ball. This
time the opponent is still not closer to the ball. TURTLE 3 and
4 see the opponent as closest to the ball, but TURTLE 3 is still
closer. The majority thinks that DefCon is 〈oppBall〉 (4), while the
actual situation should be 〈ourBallFree〉.

oppBall 3x Step 96

Stp ID DC BID CPB T Opp OC OurD OppD
96 1 5 1 0 0 0 4 13.07 0
96 2 4 3 0 0 3 4 7.83 0.85
96 3 4 3 0 0 3 4 0.31 0.84
96 4 4 4 0 0 3 4 2.19 0.84
96 6 2 3 0 0 0 4 8.28 0

+ 4 3 10 3

Table 8: Three TURTLEs agree that the opponent has the ball.
However the distance to the ball is > 80 cm for all of them.

24 deepturtle toolkit

Missing a Scrum situation

In step 97 the same opponents are seen with the closest opponent
for robot 3 at 74 cm. At the same time robot 3 also registered its
CPB, which means that both robots own the ball, which signals
a 〈Scrum〉 situation, but it reports 〈OppBall〉. The other robots
report 〈OppBallFree〉. TURTLE 3, who owns the ball reports
〈oppBall〉, which should be 〈ourBall〉. This is very hard to explain
and does not seem to make sense. In this case, TURTLE 3 is
〈bestOur, bestOpp and bestCpb〉 at the same time and so its DefCon
is taken, which is 〈OppBall〉 and is wrong, since it’s CPB is turned
on. This should be 〈ourBall or Scrum〉.

Missing Scrum Step 97

Stp ID DC BID CPB T Opp OC OurD OppD
97 1 5 1 0 0 0 4 13.12 0
97 2 4 3 0 0 3 4 7.87 0.75
97 3 4 3 1 0 3 4 0.2 0.74
97 4 4 4 0 0 3 4 2.28 0.75
97 6 4 4 0 0 3 4 8.28 0.75

+ 4 3 3 3

Table 9: Situation where both parties are reported to own the
ball, but does not match the DefCon. Opponent 3 is too far from
the ball to own it, but the report should either be OurBall or
Scrum.

OppBall too far away

In step 99 robot 6 is still the only one seeing the opponent close
to the ball, but at a distance of 1.40m and reports 〈OppBall〉. Most
TURTLEs seem to agree, even though the ball is too far away and
TURTLE 3 is closer to the ball.

OppBall far away Step 99

Stp ID DC BID CPB T Opp OC OurD OppD
99 1 5 1 0 0 0 4 12.83 0
99 2 4 3 0 0 0 4 7.47 0
99 3 5 3 0 0 0 4 0.79 0
99 4 4 4 0 0 0 4 1.54 0
99 6 4 3 0 0 3 4 8.09 1.40

+ 5 3 0 3

Table 10: TURTLE 6 believes the opponent has the ball, however
the ball is at a distance of 140 cm. This report is not used, since
TURTLE 3 has the most BallID’s and also sees 4 opponents.

DefCon does not match CPB

This situation happens when there is a discrepancy between a
robot’s assessment of ball ownership and actual ownership. TUR-
TLE 4 has it’s CPB turned on. There may be a delay before the
other robots have communicated this change, but in some cases
the situation is not registered at all. It means that the DefCon is
〈Our/OppBall〉 while it should be 〈Our/OppBallFree〉. This does

generally not result in erroneous decisions, except in cases where
a shot or dribble is involved.
For the opponents this is different. There we can only judge if
an opponent owns the ball, if it is close to the robot. In practice
we see situations, where there is a 〈oppBall〉 situation, where the
distance is 1m or larger. In many cases there is a 1:4 difference
in ball possession. This cannot be correct and it seems that the
〈oppBall〉 condition is not strict enough.
In this example in step 106, which we also have seen in the disap-
pearing opponents in Table ??, TURTLE 4 has it’s CPB set, so it is
the 〈bestCpb〉 and also the 〈bestOur〉. It has a DefCon of 〈OurBall
(1)〉, so all seems well but in step 107 the CPB is off. 〈OurBall〉
remains set until step 118 (not shown). One would expect that
within a few steps this would have been picked up by the other
TURTLEs. However, they continue to believe that the DefCon
state is 〈OppBallFree (5)〉.

OurBallFree Step 106

Stp ID DC BID CPB T Opp OC OurD OppD
106 1 5 1 0 4 0 3 12.24 0
106 2 5 4 0 4 0 3 6.8 0
106 3 5 3 0 4 0 3 2.18 0
106 4 1 4 1 4 0 3 0.2 0
106 6 5 5 0 4 7 3 7.83 0

+ 1 4 4 4 4

Table 11: In step 106 CPB is set for TURTLE 4. Step 107 has no
CPB, but OurBall remains set until step 118.

Vanishing and Re-Appearing Opponents

In step 5699 all TURTLEs see only 4 opponents. But they do not
all see the same opponents. TURTLE 1, 3 and 6 are missing C2,
while Turtle 2 and 4 are missing C5. With this information, the
positions of all opponents should be known. At this time, we are
not yet using such information, but a following version will use
this information.

Table 12: Example of vanishing opps step 5699.

ANOMALIES IN THE INPUT 25

In step 4637, TURTLE 3 sees all opponents, where before C1 and
C3 were missing. So in this step they are re-appearing and their
positions restored.

Table 13: Example of re-appearing opponent step 4637.

Part II

The Analist and Critic

27

This part is currently under development and checks each episode for undesirable
game situations. It generate remarks about the game situation in general and details
for each of the field players. It is based on heuristics, provided by an expert Futsal
coach and delivers advice about situations that are undesirable.

In the next phase of the system this part will be implemented and results in a
similar logfile as during load, but then targeted at situations that should be avoided.

The following checks will be performed:

1. Action - What is an agent doing?

2. Intent - Why is the agent perfoming this action?

3. Remarks - Critical remarks about agent actions.

The Set-Piece view of the system
Figure 4: *

Part III

Making Set-Pieces

29

Set-Pieces are used by Soccer and Futsal coaches to describe how certain situations
can best be handled. In coaching manuals, these are depicted as situation sketches,
showing the positions of players and the ball, along with descriptions of the actions
players should perform. The richness of information of the 〈.mat〉 files allows us to
generate such images and form the basis for the learning phase of the system, where
the set-pieces are used to analyze the behavior of opponent teams.

The Set-Piece view of the system
Figure 5: *

Part IV

Behavior Patterns

31

During this phase, the system will find frequent patterns that are used during one
or more games. It detects situations like passing, attacking or defensive strategies for
different game situations and player positions.

This part generates set-pieces for the entire team and detailed tactics, used by
agents.

Part V

Learning Behaviors

33

This is the actual Deep Learning part of the system. Using the information, gath-
ered by the preceding stages, a symbolic model has already been built, using Knowl-
edge Engineering principles, leading to explainable models of agent behaviors. This
GOFAI approach teaches the learning component of the system, what certain behaviors
like dribbling, rotating, passing and marking look like. With that symbolic information
the system can now learn to understand the behavior of the opponents, for which
we only have position data. The system learns to recognize opponent behaviors and
classifies these into a library of often observed behaviors of each of our opponents, by
analyzing the game-logs, captures in the 〈.mat〉 files.

The GSI view of the steps in an episode, that forms input to the Neural Network.
Figure 6: *

Part VI

Opponent Analysis

35

When the system has learned behavioral patterns, these are used to analyze the
behavior of our opponents and strategies and tactics, followed by competing teams are
detected and collected.

	Change History
	I Converting and Checking the File
	Introduction
	Installing and Testing the Software

	Loading the file
	The User Interface
	The Browsers
	Technical Background
	Introduction
	The World Model
	Conflict Resolution
	DefCon
	Ball Position and Velocity
	CPB
	OppBall
	Turtle locations
	Opponent locations
	Opponent IDs
	Tracking Opponents
	Disappearing and Reappearing IDs
	Ghosted Ball Movements
	Checking Who Sees Who
	Actions
	The Log-file

	Checking Criteria
	Anomalies in the input
	DefCon does not match CPB
	Multiple robots seeing an oppBall situation
	Missing a Scrum situation
	OppBall too far away
	DefCon does not match CPB
	Vanishing and Re-Appearing Opponents

	II The Analist and Critic
	III Making Set-Pieces
	IV Behavior Patterns
	V Learning Behaviors
	VI Opponent Analysis

