


Building the TU/e Mini-Turtle Robot
Peter van Lith

Technische Universiteit Eindhoven
vanlith.peter@gmail.com

June 23, 2019

Abstract

In 2016 we started a project to recognize robots with the Tech United MSL team during a competition using Neural Networks.
During work on this project the idea to build a smaller version of the Turtle robots emerged to serve as a testbed. This document
describes the development of this platform. Gradually this platform grew into an independent robot that was intended to learn by
itself to recognize obstacles and dribble with a ball in a room with unpredictable obstacles.

1. Introduction

This project is a combination of an autonomous
soccer playing robot that uses a Neural Network
both for image classification and localization and a

learning environment in which a GPU-equipped laptop
is used to train a Neural Network used for object recog-
nition and learning simple soccer-playing behaviors.

2. The Hardware

2.1. The Basic Robot

The robot is a modified SuperDroid 3-Omniwheel Vec-
toring Robot. Normally this robot has the motors and
drive electronics under the bottom layer. This gives the
robot a high clearance but has the disadvantage that
any obstacles that are on the ground can damage the
electronics or the wiring. So we decided to make the
underside of the robot flat and mount the motors and
electronics on the inside. This makes the clearance lower,
but protects all mechanical and electronic parts.

The top layer is reserved for all other electronics like
the power supply, batteries, fuses and wiring, which are
all mounted at the bottom of the top layer. On top of
the robot are the processors, which are easily accessible.
Two handles on the sides are used to carry the robot and
also to protect the processors.

This robot kit comes in three versions: a basic kit with
only the layers and motors, a version with mounting
brackets and a programmable version that includes an
Arduino. We selected the kit with mounting brackets

Figure 1: SuperDroid standard TP-251-003 Robot Kit

and provided our own electronics. We also modified the
layout, so all components could fit inside the body of the
robot. It is smaller than our MSL turtles and therefore
easier to carry along for tests and demonstrations.

2.2. The Bottom Layer

The bottom layer consists of an aluminium frame on
which the motors are mounted. We inverted the base
plate, so that the motors and electronics are on the inside
of the robot and the bottom is entirely flat.

2

mailto:Peter van Lith


Building the TU/e Mini-Turtle Robot (June 2019)

Figure 2: The bottom layer of the robot

The three motors each have a driver board that is
connected to the Arduino Nano in the middle. This
processor is connected through a USB cable with the
Main Processor and controls the three motors. It also
monitors the battery levels.

2.3. The Top Layer

The Top layer has both a Top and Bottom part. The Bot-
tom part hosts the batteries, power control and all power
wiring. In the picture you see the various components
from bottom to top:

Figure 3: The bottom of the toplayer with wiring

1. The Power Switch.
2. The cable connector rail.
3. The battery holders.

4. The fuses with battery connectors.
5. The blue PCB is the Inertial Movement Unit.
6. The step-down buck converter for the RPi. This was

removed in 2019 and replaced with a 4 Amp buck
converter with display, located on the top layer of
the robot, next to the main processor.

7. The power cables leading to the bottom layer.

The upper part of the top layer houses the main pro-
cessors:

Figure 4: The toplayer with processors

1. The Power Switch.
2. The Arduino with touch screen.
3. The Omnidirectional Camera.
4. The Raspberry Pi.
5. The Movidius NCS with power unit. This was re-

placed in 2019 with the NVidia Jetson Nano, with
128 Cuda cores.

6. The handle bars.

2.4. The Drive Unit

The drive unit consists of the three motors with their
motor drivers and the Arduino Nano which controls the
three motor drivers. The Nano also has an analog input
for the two batteries, so it can measure the power level
of each battery. Every motor driver receives its power
by a cable from the upper deck.

3. The Processors

The mini Turtle robot is equipped with four processors:

3



Building the TU/e Mini-Turtle Robot (June 2019)

Figure 5: The bottom layer of the robot with wiring

1. The Main Processor, a Raspberry Pi 3B, located at
the top layer. this processor was replaced in 2019
with the new NVidia Jetson Nano.

2. The
3. The Control Processor with an LCD touch screen,

located at the top.
4. The Motor Processor, located at the center of the

bottom layer and
5. A Movidius Neural Compute Stick (NCS) also lo-

cated at the top layer.

The processors are all powered from a 11.1V Lipo battery
with a capacity of 2200 mAh through a 5V step-down
buck converter that supplies 2.5A.

3.1. The Main Processor

Initially the Main Processor was a Raspberry Pi 3B with
a 32G SD card, connected via a USB cable to the three
other processors: This processor is running Raspbian
Stretch and has an optional connection with the portable
System76 Oryx-Pro, which is equipped with a powerful
NVidia GTX-1070 GPU.

In March 2019 this was replaced with the NVidia
Jetson Nano, which is an AI version of the Raspberry
Pie but has a move poweful processor, 4 Gb of RAM,
a 64 G SD card and 4 USB-3 ports. It main advantage
is that is has 128 Cuda cores and can run TensorFlow
natively. It is a more powerful machine, running Ubuntu
18.04 LST, the same as our main Oryx-Pro processer.

Figure 6: The Raspberry Pi 3B

Figure 7: The Jetson Nano processor

3.2. The Control Processor

3.3. The Motor Processor

The Motor Processor is an Arduino Nano V3, connected
to the Raspberry-Pi through USB. The Communications
Protocol is used to send and receive messages over the
USB port, consisting of a pre-defined sequence of com-
mands. The processor is connected to three motor con-
trollers, whjch send one PWM and two digital signals to
each motor controller. The three motor controllers A, B
and C are connected through the pins, shown in table X
according to the schema in Figure 11

4



Building the TU/e Mini-Turtle Robot (June 2019)

Figure 8: The Freaduino Uno Pin-out

Figure 9: The TFT Touch Screen

3.4. The Neural Network Processor

In march 2019 the Movidius was replaced with the
NVidia Jetson Nano processor which houses 128 Cuda
cores and runs standard Ubuntu 18.04 LTS.

Table 1: Motor Controller Pins

Connections
Motor Blk Red Wht
Signal InA PWM InB
A D10 D09 D08
B D07 D06 D05
C D04 D03 D02

Figure 10: The Arduino Nano Pinout

Figure 11: The Motor Controller Connections

3.5. The System76 Oryx-Pro computer

4. The Peripherals

4.1. The Camera

4.2. The IMU

The robot uses an absolute Inertial Measurement Unit,
the Bosch BNO055. This unit is a 9DOF unit with inte-
grated processor that uses sensor fusion to deliver an
absolute orientation, using a compass, accelerometer
and gyroscope. All processing to deliver an absolute
orientation is done in the sensor itself and it delivers the
output over a standard I2C connection. The sensor is
connected to the Jetson Nano on the top layer, which
will deliver this information to the main processor on
request.

If you’ve ever ordered and wire up a 9-DOF sensor,
chances are you’ve also realized the challenge of turning
the sensor data from an accelerometer, gyroscope and
magnetometer into actual "3D space orientation"! Ori-
entation is a hard problem to solve. The sensor fusion
algorithms (the secret sauce that blends accelerometer,
magnetometer and gyroscope data into stable three-axis
orientation output) can be mind-numbingly difficult to
get right and implement on low cost real time systems.
Bosch is the first company to get this right by taking a
MEMS accelerometer, magnetometer and gyroscope and

5



Building the TU/e Mini-Turtle Robot (June 2019)

Figure 12: The Movidius Neural Compute Stick (NCS)

putting them on a single die with a high speed ARM
Cortex-M0 based processor to digest all the sensor data,
abstract the sensor fusion and real time requirements
away, and spit out data you can use in quaternions, Euler
angles or vectors.

Rather than spending weeks or months fiddling with
algorithms of varying accuracy and complexity, you can
have meaningful sensor data in minutes thanks to the
BNO055 - a smart 9-DOF sensor that does the sensor
fusion all on its own! You can read the data right over
I2C and Bob’s yer uncle.

The BNO055 can output the following sensor data:

1. Absolute Orientation (Euler Vector, 100Hz) Three
axis orientation data based on a 360° sphere

2. Absolute Orientation (Quaterion, 100Hz) Four point
quaternion output for more accurate data manipu-
lation

3. Angular Velocity Vector (100Hz) Three axis of ’rota-
tion speed’ in rad/s

4. Acceleration Vector (100Hz) Three axis of accelera-
tion (gravity + linear motion) in m/s2

5. Magnetic Field Strength Vector (20Hz) Three axis of
magnetic field sensing in micro Tesla (uT)

6. Linear Acceleration Vector (100Hz) Three axis of
linear acceleration data (acceleration minus gravity)
in m/s2

7. Gravity Vector (100Hz) Three axis of gravitational
acceleration (minus any movement) in m/s2

8. Temperature (1Hz) Ambient temperature in degrees
celsius

Handy, right? So we placed this very nice sensor on
its own breakout, complete with 3.3V regulator, logic
level shifting for the Reset and I2C pins, an external
32.768KHz crystal (recommended for best performance),

Figure 13: The Koget Dot Omnidirectional lens

and breakouts for some other pins you might find handy.
Comes assembled and tested, with a small piece of
header. Some soldering is required to attach the header
to the breakout PCB, but its pretty easy work. Best of
all you can get started in 10 minutes with our handy
tutorial on assembly, wiring, CircuitPython and Arduino
libraries, and Processing graphical interface, and more!

5. Power Management

Power is provided to the computer by two 11.1V Lipo
batteries with a capacity of 2.2 Ah, controlled by a switch
and protected by a glass fuse under the top layer. One
battery is used to power the motors, the other one is
powering the electronics. There is one 5V 2.5A step-
down buck converter (Pololu D24VF5) powering the
Raspberry Pi 3B, which in turn powers the two Arduinos
through its USB connections.

The USB ports of the Raspberry Pi can deliver a total
of 1200 mA to the 4 USB ports, while the RPi itself uses
roughly 1500 mA. Because the RPi is rather sensitive to
power fluctuations, a 2.5A supply is recommended.

However the Movidius NCS consumes between 200
and 500 mA, which the RPi cannot provide when power-

6



Building the TU/e Mini-Turtle Robot (June 2019)

ing both Arduinos as well. So the Movidius has its own
step-down converter, housed in a small custom made
USB 2.0 to Mini connector unit.

Figure 14: The Movidius NCS with its own power supply

6. The Software

6.1. Installing the Jetson Nano

The Jetson Nano runs the ARM64 version of Ubuntu
18.04 LTS, which comes pre-installed on a micro-SD
card. In order to run our software a number of packages
need to be installed. Also some small errors in the
default configuration need to be corrected.

Update and install Desktop sharing
sudo apt-get update
sudo apt-get upgrade
sudo apt-get autoremove
sudo apt-get install nano
See Getting started woth the NVIDIA Jetson Nano
Developer Kit from Alasdair Allan about fenabling
desktop sharing error in Vino files. Also set Desktop
sharing as indicated in this document.

Install Samba
Samba has its own password system. Install this too.
sudo apt-get install samba
sudo smbpasswd -a peter
sudo /etc/init.d/smbd restart
Add shares for Desktop, Public and Documents

Install PIP and PIP3

Table 2: Opcode Structure

Instruction
Opc Length NParms
0b11110000 0b00001100 0b00000011
0xF0 0x0C 0x03

Table 3: Instruction Set

Instruction
Sync Opcode Parms
0xFF 0xFF 0xFF
0xFF 0xFF 0xFF

sudo apt install python3-pip
sudo apt install python-pip

Install Thonny
pip3 install thonny (not working)
Install Arduino
Set up file sharing
Synchronize MiniTurtle with other computers.

6.2. Communication Protocol

The Raspberry Pi is the main processor and communi-
cates with the two Arduinos and the Movidius using the
USB serial connection. Although the Movidius is a USB
3.0 device, it is used in USB 2.0 mode, because the RPi
only has USB 2.0 ports.

To be able to control the two Arduinos a special pro-
tocol is developed that makes the execution of remote
procedure calls (RPC) in the Arduino possible. This pro-
tocol is implemented as a Virtual Machine, where the
Arduinos are given variable length instructions and are
returning data when executing every function. Every
instruction begins with a synchronization byte to make
sure that both processors are in sync. When a connection
is lost, or a cable is removed, data can still be floating
and the RPi will send sync commands until the Arduino
responds with an acknowledgment. When synchroniza-
tion is established the variable length instruction is sent
and the RPi waits for the response. The communication
with the Movidius is handled by the API, provided for
the NCS unit.

7



Building the TU/e Mini-Turtle Robot (June 2019)

7. Learning

The mini-Turtle project aims at providing a real-time,
one-shot, continual learning environment for a simple
robot that learns continually to play with a ball. To
this end it needs to learn to recognize arbitrary balls,
to explore its environment, to dribble with the ball and
deliver it to a designated area, while navigating its en-
vironment. All this needs to happen online and in real-
time in a real live environment, without the use of any
simulator. Existing learning environments are not well-
suited to this task, since they are lacking the following
capabilities:

1. They cannot learn sequentially but in batches of
large numbers of examples. In our case there is a
continuous stream of image- and sensor input that
serves as input to the learning agent.

2. Existing one-shot learning algorithms suffer from
catastrophic forgetting as new concepts come in. We
need a way to let the network grow dynamically.

3. One-shot learning, using iterative, back-
propagation learns in small increments and
needs many cycles to learn something, while some
events may represent dramatic occurrences that
should be remembered with much more strength
than other, less dramatic events. Current networks
do not make such distinctions.

4. As new events occur, new classes need to be learned
and some kind of structure or hierarchy needs
to grow that also is grounded in real-world ob-
jects. There needs to be a correspondence between
learned concepts and their real-wprld symbolic rep-
resentation or meaning.

While in old-school AI systems, like Expert-Systems
and Data-Driven approaches everything was built
around symbolic concepts, the era of Neural Networks
seems to have done away with symbols and merely con-
centrates on self-learning and model-driven or model-
less systems, that bear no relevance to our symbolic
world. This makes communication with and under-
standing of the way these systems operate very difficult.
If self-learning systems are to become acceptable to our
society, they need to be able to explain why and how
they solve problems in our living space and must there-
fore speak and understand our language and way of live.
We will not feel comfortable with systems that alienate
themselves from our world of feelings and impressions.

Therefore some fundamental shortcomings in current
AI technology will be required before we can allow them
to take control of part of our lives on our behalf. Impres-
sive as contemporary deep learning systems are, they do
not meet these requirements and much more research
to endow them with these capabilities is required.

This project is aimed at finding out, what research has
already been done on these topics and use these tech-
niques to provide a simple self-learning platform that
exhibits some of these features, while showing us, what
capabilities are missing and need further development.
This very simple, soccer-playing robot is meant to form
a research platform for such a system, operating in a
simple environment, executing simple tasks, learning
these by experiments and helped by a teacher, using only
simple positive or negative feedback signals in the form
button pushing and symbolic grounding information.

7.1. The Neural Network

7.2. Image Processing

7.3. What the robot learns

The robot will learn a relatively small number of skills,
that are gradually getting better by trial and error. We
will include facilities to learn the following behaviors:

1. Finding the Ball. This part is split into recognizing
the ball and finding its location.

2. Go to the Ball. When found, the robot must learn
how to go to the ball and stop when it gets close.

3. Avoid obstacles. It should explore its environment
and find out what obstacles do look like and learn
to avoid them.

4. Dribble with the Ball.

5. Find the Goal.

6. Move to the Goal.

7. Score a Goal.

7.3.1 Recognize the Ball

Using its camera input, the system will have to learn
to recognize the ball. We do this by pressing a button
Ball or NoBall. The current image is then used to let the
network learn to recognize the ball. Several augmented
versions of the image, in which rotations and distortions

8



Building the TU/e Mini-Turtle Robot (June 2019)

are used to let the network learn the features that deter-
mine what a ball looks like. It should also be possible to
retrain the network to recognize other balls interactively.

7.3.2 Find the Ball

Once the network has learned to recognize the ball, it
needs to find the location of the ball. This is done using
a Class Activation Map, in which the highest activation
point determines the location of the ball. It will learn to
return either a vector and size or an angle and distance.

7.3.3 Go to the Ball

Using the known location of the ball, the robot should
move towards the ball and learn to control the three om-
nidirectional wheels to let the robot move in a straight
line, accelerating and decelerating as is goes. It should
use the ball position and compass information to main-
tain direction. However, when it detects an obstacle, it
should avoid it. This is a separate function that needs to
be learned and integrated with Go2Ball. We will use a
Q-Learning approach to let the robot learn this behavior.

7.3.4 Recognize Obstacles

To recognize obstacles, we take an approach that differs
from recognizing the ball. We will let the robot explore
its environment, more or less randomly. While it is
driving around it will learn to associate motor forces
with acceleration data. When it experiences a resistance,
it knows that there is some kind of obstacle. When
it detects a negative acceleration, it knows, it bumped
into something. Using Q-Learning it will then learn to
associate the part of the image where it collided with
the class Obstacle and learn to recognize obstacles in
this way.

7.3.5 Avoid Obstacles

Once it has learned to recognize obstacles it will learn
to steer away from obstacles. While executing the GoTo
commands, it will always keep the obstacles in sight and
maintain its direction, while steering around obstacles.

7.3.6 Dribble with the Ball

In this case the robot will go to a certain location, but at
the same time must keep the ball. Since the robot has no
dribbler, it will have to keep the ball between two of its

wheels, while navigating. We will be using Q-Learning
as well to let the robot learn this behavior.

7.3.7 Recognize the Goal

7.3.8 Move to the Goal

7.3.9 Score a Goal

7.4. Complexity of the Learning Process

We have no idea yet of how well a small Jetson Nano will
be able to learn these behaviors. So for each behavior
there will be a separate Neural Network. If the processor
is not powerful enough to process this information, we
will investigate the possibility of including a Coral TPU
processor, to handle more demanding tasks. This may
mean that the learned networks need to be compiled
and converted for the TPU Accelerator and that new
behaviors are learned offline. We will see how far we get
with this. As the process of learning of each behavior
is similar, we may learn each behavior separately and
then later on transfer them to the more powerful TPU
Accelerator. Since that only handles inferencing, it can
handle more tasks than the Jetson GPU’s. There is also
the possibility to later upgrade to the Jetson Nano board
with 256 Cuda Cores, if these become available.

7.5. How the robot learns

The main aim of this miniTurtle project is to build a
self-learning robot. In most cases learning is done in a
simulation environment, using a large number of exam-
ples in a batch process. In this project we want the robot
to explore its environment and learn interactively. That
means a different approach, where real events drive the
learning process in a continuous learning process. As
soon as the robot is powered on, it is learning continu-
ously.

Such an approach is known as Continual Learning and
differs from the well-known Reinforcement Learning
approach in several aspects:

1. Forgetting earlier events. As more and more new
events occur, older events tend to be forgotten by
the network. In a batch environment this is pre-
vented by collecting all examples and training the
network with these. We would have to store all
earlier examples and regularly retrain the network.

9



Building the TU/e Mini-Turtle Robot (June 2019)

This however is not the way that we want the net-
work to grow. So we need to find a way to let the
system remember earlier events.

2. Adding new classes. As new events occur, new
classes or categories will be added to the net-
work. This will change the network architecture
and makes remembering earlier events more diffi-
cult. How can we grow the network and adapt it
with new classes, while the learned information is
retained.

3. Small number of samples. In existing networks,
thousands of samples are required. In our case
there will be samples, coming from the environ-
ment and they will grow with time. We could use
augmentation to generate many variations of each
event, so the network can be trained with more ex-
amples. This process is also known under the name
of ’one-shot-learning’.

4. Slow learning rate. Examples are all learned with
the same learning rate. However some events are
more important than others. When an event has a
large impact on performance, it should get a larger
influence in the weights that are learned. So we
need to find a way to include the importance of an
event.

References

[1] Continual Lifelong Learning in Neural Networks: a Re-
view.

[2] Jake Bruce, Niko Sünderhauf, QUT, Brisbane QUT,
and Brisbane. One-Shot Reinforcement Learning for
Robot Navigation with Interactive Replay. 1711.

[3] Yanwei Fu, Tao Xiang, Yu-Gang Jiang, Xiangyang
Xue, Leonid Sigal, and Shaogang Gong. Recent
advances and in zero-shot and recognition. 1710.

[4] Guang-Bin Huang. Real-Time Learning Capability
of Neural Networks.

[5] Jaehong Joon, Eunho Yang, Jongtae Lee, and Sung Ju
Hwang. lifelong learning with dynamically expan-
danle networks.

[6] Daniel J. Mankowitz, Augustin Žídek, André Barreto,
and Dan Horgan. Unicorn: Continual learning with
a universal, off-policy agent. 1802.

[7] Alexander Ororbia, Ankur Mali, C. Lee Giles, and
Daniel Kifer. Continual Learning and of Recurrent
and Neural Networks and by Locally and Aligning
Distributed and Representations. IEEE, 1810.

[8] Anton Puzanov and Kobi Cphen. deep reinforce-
ment and one-shot learning and for ai classification
systems.

[9] Mark Woodward, Chelsea Finn, Independent Re-
searcher, Berkeley AI, and Research (BAIR). Active
one-shot learning. 2016.

10



Building the TU/e Mini-Turtle Robot (June 2019)

8. Appendix

8.1. Previous work

In this section earlier work on learning behaviors with
robots is discussed. It forms the basis for the previous
work sections.

8.2. Tutorials and Overview Articles

8.2.1 Fu1710 - Recent Advances in Zero-shot Recog-
nition (8) [3]

This overview article describes the most important con-
cepts and work in LifeLong Learning and Zero-shot
learning. It also addresses One-shot learning, Few-shot
learning and similar concepts. This approach is also
known as ’learning to learn’. The idea behind Zero-shot
learning is to learn new concepts and add these to an
existing network, without any new examples. This is
achieved by generalizing recognition models and using
existing properties to infer the existence of a new class.
This is a form of transfer learning and the main problem
with this is to learn new concepts, without forgetting
existing concepts. The main idea is to associate learned
features in an image with semantic attributes and to use
a model of such attributes to recognize new classes. In
our case, for instance, the features of a robot shape like
color, shape of the number plate, body shape and other
objects, could be used to separate the robot from one
team from another one. There are several different kinds
of attributes, that are use in the various approaches:

1. User-Defined attributes. Defined by experts. Easy
to use, but hard to define and maintain.

2. Relative attributes. Define rankings. Singh et al
[48] developed a DCNN to simultaneously localize
and rank visual attributes. We could use that in
recognizing robots, people, arbitrary balls and other
categories.

3. Data Driven attributes. This can be achieved by
creating a large body of relative attributes that help
in discriminating attributes automatically.

4. Video attributes. Most attributes are taken from
static images. In moving images more dynamic
attributes can be found like actions and direction of
movement.

5. Semantic embedding like a Concept Ontology or
Semantic Word Vectors.

In most cases Zer-shot learning will be based on an
embedding model. There are different type of models:

1. Bayesian models.

2. Direct Attribute Prediction Models (DAP) in shich
the semantic relationship between concepts is en-
coded by human experts.

3. Indirect Attribute Prediction (IAP) which is built by
combining the probabilities of all associated known
classes. It is also called a direct similarity-based
model.

4. Semantic Embeddings. Learn to associate the visual
features with a semantic space.

5. Embeddings in common space. Here an existing
embedding space is used.

6. Deep embeddings. Here a deep neural net learns
class label embedding vectors.

The paper makes a distinction between Zero-shot
recognition and One-shot learning. In One-shot learning
one or a few examples are used to learn to recognize new
classes. This can be done by direct supervised learning
and by transfer learning. The approaches mainly differ
in What knowledge is transferred and how the knowl-
edge is transferred. There are a number of approaches:
SJE, WSABIE, ALE, DeViSE and CCA.

The basic problem with all approaches is to learn
to recognize new classes and integrate these with an
existing network, without losing the concepts already
learned. Technically the problem is to add new classes
to an existing network, which changes its architecture
and keep all the learned weights, while allowing new
weights to be learned, without gradually eliminating the
older weights. In a conventional system this is prevented
by retraining the network with all known examples. In a
Continual Learning environment, no examples are kept
and new samples could easily erradicate older knowl-
edge. This problem is also associated with defining the
strength of an event, which should be taken into account,
when remembering new or existing events.

The approach is to maintain a model to infer new
classes, but no examples were given, where the actual
network architecture was growing to accomodate new

11



Building the TU/e Mini-Turtle Robot (June 2019)

classes. There must be more work where this is actually
done.

8.2.2 Parisi1802 - Continual Lifelong Learning with
Neural Networks: a Review (8) - [1]

In this overview article several approaches to Contin-
ual Learning are described. It explores the biological
inspiratons for this work, especialliy the Hippocampus,
which is associated with short-term memories and the
Prefrontal Cortex (PFC) which is associated with long-
term memory. Both systems need to be synchronized,
which is believed to take place during REM sleep. In
this process, generalization takes place as well as re-
inforcement of earlier known concepts, facilitating the
prevention of forgetting.

Neural Networks are usually trained in batches of in-
put data. When data is learned in a continuous stream,
catastrp[jic forgetting takes place when new concepts
come in and overwrite older concepts. This also seems
to take place in humans, but only under restricted con-
ditions.In the past 20 years many attempts have been
made to prevent this forgetting. The simplest approach
is to completely retrain the network when new examples
come in, but this takes additional time and memory. The
most general approach is to either store older examples,
or recreate older examples from existing memory and
use a replay buffer to rehearse the system at regular
intervals. The three most common approaches are: 1)
Retraining with regularization, 2) Training with network
expansion and 3) Selective Network Retraining and ex-
pansion.

Most experiments are conducted with MNIST and
CIPHAR-10 but more elaborate and realistic domains are
being developed. With these simple test environments
a number of approaches have been tested in order of
performance:

1. GeppNet

2. GeppNet+STM

3. FEL

4. MLP

5. EWC

Themes that are important in these approaches are
staged learning, generalization, transfer learning, where
earlier concepts are re-used to learn newer concepts.

Presenting tasks in a sequence here tasks are gradu-
ally becoming more complex and hierarchical learning
are important. Other aspects that were explored are
attention, intrinsic motivation, curiosity and multisen-
sory learning. Especially the newer work of Hinton on
Ensembles were mentioned as a way of separating the
impact of an experience from the task policy in two dif-
ferent weights. The main conclusion is that much more
research is required and most proposes approaches are
still performing less than batch-like training, while the
time and space requirements of the newer approaches
are more demanding. Experience Replay, especially
when based on self-generated examples seems the most
promising direction.

8.2.3 Joon2018 - Lifelong Learning with Dynamically
Expanding Networks (9) - [5]

Most existing networks train their data in batches. When
a new class needs to be added, nem samples need to
be added and the entire network must be trained again.
For systems that receive their input sequentially in real
time, like in a self-learning autonomous robot this is not
a feasible approach. In this paper a new approach is
proposed, Dynamically Expading Networks (DEN). In
this work every new event is compared with existing
knowlegde, not based on examples but on the weights
in the activation matrix. If the new event is similar
to the existing data, it is added to the training. If it
is too different, the neurons in the various layers are
split into two new neurons, one that keeps the existing
connections and another one that connects to a new class.
Then the network is retrained, using the existing weights
as a basis in which Experience Replay is performed
based on the learned weights of the various layers. So
three different situations can occur:

1. Selective retraining. It selects the neurons that are
relevant to the new task and selectively retrains
these.

2. Dynamic network expansion. If the selective retrain-
ing does not improve the loss, the entire network is
expanded top-down, eliminating unnecessary neu-
rons.

3. Network split/duplication. When units drift away
too much from their original values, neurons are
duplicated and then retrained.

12



Building the TU/e Mini-Turtle Robot (June 2019)

This approach eliminates catastrophic forgetting, but
also creates a network that is more efficient than one
with fixed sizes of layers. This not only reduces that
size of the network, but also makes it more efficient.
In tasks like MNIST and CIFAR-100 it proves that this
approach results in better performance, while preventing
drift and forgetting. The sequence in which concepts are
presented are relevant in the speed of learning. Concepts
that are more related help in improving the learning
speed when presented gradually, while presenting them
at random results in longer training time.

The method is compared to Elastic Weight Consolida-
tion (EWS - Kirkpatrick2017) and a progressive network
(Rusu2016).

8.2.4 Mankowitz1802 - Unicorn: Continual Learning
with a Universal Off-Policy Agent (6) - [6]

This policy-gradient based DQN type network learns
to generalize tasks using Universal Value Function Ap-
proximation (UVFA) to learn to find similar tasks in a
network that uses an LSTM layer. The pool of tasks acts
as a replay buffer that aims at learning a hierarchical
task model. It is similar to [9] and [8]

8.2.5 Puzanov1808 - Deep Reinforcement One-Shot
Learning for AI Classification Systems (5) - [8]

This article is similar to the previous one but introduces
a pool of analysts that have to determine the actual class,
in case the network is not certain enough. This includes
an elaborate model of determining the time needed for
human analists to classify and include this in the total
cost of finding a solution.

8.2.6 Woodward2016 - Active One-shot Learning (6) -
[9]

This paper describes a one-shot reinforcement learning
approach with a deep recurrent model, Is is based on
DQN but with the added condition that it is a one-
shot approach. It is based on work of Santoro2016 and
extends this work. It is very different from the Dynamic
Extension Network [5], which deals with a CNN only.
In this work, a DQN network is extended with an LSTM
layer to learn to generalize its input. Because of this
approach there is no dynamic network expansion and
is solving another type of problem altogether. Need to
further work out the differences between these two and

concentrate on finding out how these two approaches
may be combined.

8.2.7 Bruce1711 - One-Shot Reinforcement Learning
for Robot Navigation with Interactive Replay
(8) - [2]

This work describes a combination of real and simulated
robot navigation learning using a DDQN with experi-
ence replay buffer, concentrating on one-shot learning.
In a single pass the robot explores its environment and
then a model is created in which augmented versions are
used to create a replay buffer from which navigations
to a given target are learned. The 360 degree image is
split into four 90 degree images and using a resnet-50
transfer learning layer, finds features in the image to
find significant features. It used offline interactive replay
to learn the best navigation, which is then used in the
real-time environment. It includes a good explanation of
model-based and model-free Q-Learning and tests three
different approaches, of which the bootstrapped DQN
with an LSTM performs best. This work is described in
Osband2016 Deep exploration via bootstrapped DQN.

8.2.8 Huang2006 - Real-Time Learning Capability of
Neural Networks (7) - [4]

This curious, self-referencing article from 2006 is inter-
esting, because it introduces a different approach to
learning a sparse network that is not based on iterative
back-propagation but on a single-pass analytical calcula-
tion of weights and biases in two layer neural networks.
It claims to be a factor 10 faster and having a better per-
fomance than regular backprop networks. The approach
is called Realtime Learning Algorithm (RLA) and it is
interesting to investigate if this. or similar approaches
have been investigated any further and found their way
in deep-learning approaches.

8.2.9 Ororbia1810 - Continual Learning and of Re-
current and Neural Networks and by Locally
and Aligning Distributed and Representations
(8) [7]

This work Parallel Temporal Neural Coding Network
(T-TNCN), based on Local Representation Alignment
(LRA) as an alternative to back-propagation in recurrent
networks (RNN) using LSTM. It is based on Bayesian

13



Building the TU/e Mini-Turtle Robot (June 2019)

predictive coding. In related work, sparse attentive back-
tracking is mentioned and suggests that in the brain
a continuous process of hypothesizing and prediction
works as an intertwined top-down-bottom-up method.

The way it works is that it receives a continuous
stream of input concepts, each trained individually, as a
mini-batch of size 1. At each step a hypothesis is made,
after which this is compared with the real class. Instead
of using back-propagation, it now creates a separate in-
stance for each class at all layers and calculates the error
in parallel. This error is then used in a calculation that
optimizes the prediction on the current layer as well as
the forward prediction to the next layer. It uses a Heb-
bian decay term to prevent domination of the updated
parameter. This calculates the total discrepancy as the
level of mismatch within the various layers. It uses a
Laplacian sparsity constraint (whatever that may be).

It mentions a number of important concepts that we
need to check:

1. Bayesian learning

2. Hebbian learning

3. Bolzmann Machines

4. Hopfield Networks

5. Laplacian and Gaussian

This paper presents a seemingly important approach
to one-shot continual learning of time sequences that is
a good alternative to conventional LSTM based DQN
learning, using back-propagation.

9. Additional topics:

1. State Detection

2. Merger between Gofai and NN

3. Learning by example

4. Subsumption Architecture and Neural Networks

5. Remote Real Time learning

14


	Introduction
	The Hardware
	The Basic Robot
	The Bottom Layer
	The Top Layer
	The Drive Unit

	The Processors
	The Main Processor
	The Control Processor
	The Motor Processor
	The Neural Network Processor
	The System76 Oryx-Pro computer

	The Peripherals
	The Camera
	The IMU

	Power Management
	The Software
	Installing the Jetson Nano
	Communication Protocol

	Learning
	The Neural Network
	Image Processing
	What the robot learns
	Recognize the Ball
	Find the Ball
	Go to the Ball
	Recognize Obstacles
	Avoid Obstacles
	Dribble with the Ball
	Recognize the Goal
	Move to the Goal
	Score a Goal

	Complexity of the Learning Process
	How the robot learns

	Appendix
	Previous work
	Tutorials and Overview Articles
	Fu1710 - Recent Advances in Zero-shot Recognition (8) Fu1710
	Parisi1802 - Continual Lifelong Learning with Neural Networks: a Review (8) - Parisi1802
	Joon2018 - Lifelong Learning with Dynamically Expanding Networks (9) - Joon2018
	Mankowitz1802 - Unicorn: Continual Learning with a Universal Off-Policy Agent (6) - Mankowitz1802
	Puzanov1808 - Deep Reinforcement One-Shot Learning for AI Classification Systems (5) - Puzanov1808
	Woodward2016 - Active One-shot Learning (6) - Woodward2016
	Bruce1711 - One-Shot Reinforcement Learning for Robot Navigation with Interactive Replay (8) - Bruce1711
	Huang2006 - Real-Time Learning Capability of Neural Networks (7) - Huang2006
	Ororbia1810 - Continual Learning and of Recurrent and Neural Networks and by Locally and Aligning Distributed and Representations (8) Ororbia1810


	Additional topics:

